Journal of Finsler Geometry and its Applications
http://jfga.uma.ac.ir/
Journal of Finsler Geometry and its Applicationsendaily1Mon, 01 Nov 2021 00:00:00 +0330Mon, 01 Nov 2021 00:00:00 +0330On conformal change of projective Ricci curvature of Kropina metrics
http://jfga.uma.ac.ir/article_1364.html
In this paper&lrm;, &lrm;we study and investigate the conformal change of projective Ricci curvature of Kropina metrics&lrm;. &lrm;Let F and&nbsp; F&tilde; be two conformally related Kropina metrics on a manifold M&lrm;. &lrm;We prove that PRic&tilde;= &nbsp;PRic if and only if the conformal transformation is a homothety&lrm;.On pseudoconvex functions in Riemanian manifolds
http://jfga.uma.ac.ir/article_1365.html
In this paper relation between pseudoconvex and quasi convex functions is introduced in the context of Riemannian manifolds. In this setting first order characterization of pseudoconvex (strongly pseudoconvex) functions is obtained.Some properties of Sasaki metric on tangent bundle of Finsler manifold
http://jfga.uma.ac.ir/article_1366.html
Let (M,F) be a Finsler manifold and G be the Sasaki-Finsler metric on TM&sim;. In this paper, we investigate some properties of Sasaki-Finsler metric which is pure with respect to some paracomplex structures on TM&sim;. Also, we show that the curvature tensor field of the Levi-Civita connection on (TM,G) is recurrent or pseudo symmetric if and only if (M,F) is locally Eulidean or locally Minkowski space.A new non-Riemannian curvature related to the class of (α, β)-metrics
http://jfga.uma.ac.ir/article_1367.html
In this paper, we find a new non-Riemannian quantity for (&alpha;, &beta;)-metrics that is closely related to the S-curvature. We call it the S&tilde;-curvature. Then, we show that an (&alpha;, &beta;)-metric is Riemannian if and only if S&tilde;=0. For a Randers metric, we find the relation between S-curvature and S&sim;-curvature.Superconnections and distributions
http://jfga.uma.ac.ir/article_1368.html
The use of a distribution &lrm;&lrm;D&lrm; &lrm;allows the presence of geometric structures such as almost product &lrm;structure&lrm;&lrm;,&lrm;&lrm;&lrm; so that the equivalent of these structures can be seen in &lrm;tangent &lrm;super&lrm;manifolds. We define associated &lrm;adapted &lrm;linear&lrm; superconnections&lrm;&lrm; &lrm;&lrm;and find all &lrm;&lrm;linear &lrm;super&lrm;&lrm;connections&lrm;&lrm; on the &lrm;supermanifold &lrm;&lrm;M &lrm;adapted to &lrm;&lrm;D.S-Curvature of left invariant Randers metrics on some simple Lie groups
http://jfga.uma.ac.ir/article_1369.html
In this paper we study the Riemannian geometry of simple Lie groups SO(3,R), SL(2,R) and SO(1,3), equipped with a left invariant Riemannian metric. We consider left invariant Randers metrics induced by these left invariant Riemannian metrics. Then, in each case, we obtain the S-curvature and show that although these Randers metrics are not of Berwald or Douglas type but in the case of SO(3,R) it is of almost isotropic S-curvature. Finally, we give the S-curvature of left invariant Randers metrics on four-dimensional Einstein Lie groups.Funk-type Finsler metrics
http://jfga.uma.ac.ir/article_1370.html
In this paper, we introduce a class of Finsler metrics with interesting curvature properties. Then we find necessary and sufficient condition under which these Finsler metrics are locally dually flat and Douglas metrics.On conformally ﬂat square-root (α,β)-metrics
http://jfga.uma.ac.ir/article_1371.html
Let F = &radic;&alpha;(&alpha; + &beta;) be a conformally ﬂat square-root (&alpha;; &beta;)-metric on a manifold M of dimension n &ge; 3, where &alpha; = &radic;aij(x)yiyj is a Riemannian metric and &beta; = bi(x)yi is a 1-form on M. Suppose that F has relatively isotropic mean Landsberg curvature. We show that F reduces to a Riemannianmetric or a locally Minkowski metric.IFPHP transformations on the tangent bundle with the deformed complete lift metric
http://jfga.uma.ac.ir/article_1372.html
Let (Mn,g) be a Riemannian manifold and TM its tangent bundle. In this paper, we determine the infinitesimal fiber-preserving paraholomorphically projective (IFPHP) transformations on TMwith respect to the Levi-Civita connection the deformed complete lift metric G=gC+(fg)V, where f is a nonzero differentiable function on Mn and gC and gV are the complete lift and the vertical lift of g on TM, respectively. Also, the infinitesimal complete lift, horizontal lift and vertical lift paraholomorphically projective transformations on (TM,Gf) are studied.On conformal vector fields on Einstein Finsler manifolds
http://jfga.uma.ac.ir/article_1373.html
In this paper, we study conformal vector fields on Finsler manifolds. Let (M,g) be an Einstein-Finsler manifold of dimension n &ge; 2. Suppose that V is conformal vector field on M. We show that V is a concircular vector field.Dually flat Finsler spaces with transformed metrics
http://jfga.uma.ac.ir/article_1374.html
Current paper deals with the property of dually flatness of Finsler spaces with some special (&alpha;,&beta; )-metrics constructed via Randers-&beta; change. Here, we find necessary and sufficient conditions under which these (&alpha;,&beta; )-metrics are locally dually flat. Finally, we conclude the relationship between locally dully flatness of these Randers-&beta; change of Finsler metrics.Conformal vector fields of square Finsler metrics
http://jfga.uma.ac.ir/article_1375.html
In this paper, we study the conformal vector fields of Finsler space with the special metric, known as Z. Shen's Square metric. Further we defined the special metric in Riemannian metric &alpha;&nbsp; and 1-form &beta; and its norm. Then we characterize the PDE's of conformal vector fields on special metric.