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Abstract. This paper focuses on the projective Riemann quadratic (PR-

quadratic) Finsler metrics, which are variant of the Finsler metrics in Finsler

geometry. The paper introduces a special class of PR-quadratic Finsler met-

rics, called SPR-quadratic Finsler metrics, which is closed under projective

changes with respect to a fixed volume form on M . This class contains the

class of Douglas-Weyl metrics and is a subset of the class of Weyl metrics. The

paper shows that any SPR-quadratic Finsler metric has a scalar flag curva-

ture and a PR-quadratic Finsler metric has a scalar curvature if and only if

it is of SPR-quadratic type. The results presented in this paper contribute to

a deeper understanding of the behavior of PR-quadratic Finsler metrics and

provide insights into the geometric properties of these metrics.

Keywords:Projective Ricci curvature, PR-quadratic Finsler metrics, SPR-
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1. Introduction

Two regular metrics on a manifold M are considered projectively related if

they share the same geodesics as the point sets. Geodesics represent the equa-

tions of motion that describe the behavior of space, making them significant in

Physics. Utilizing the characteristics of regular metrics on a manifold M and

applying them to introduce new projectively invariant quantities is a classical
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approach in projective geometry. In the realm of Finsler metrics, there exist

well-known projective invariants, such as the Douglas curvature, Weyl curva-

ture, and generalized Douglas-Weyl curvature [2], [3]. These invariants play a

crucial role in understanding the geometric properties of Finsler spaces. The

concept of projective invariants is important in Finsler geometry. The tensors

that contain both Ricci curvature Ric = Ric(x, y) and S-curvature S = S(x, y)

are more applicable in this field [17][18][20]. Z. Shen introduced the concept of

Projective Ricci curvature PRic for a Finsler metric F [8], which is defined as

follows

PRic = Ric+ (n− 1)
(S|mym
n+ 1

+
S2

(n+ 1)2

)
.

The Projective Ricci curvature of Finsler metrics on a manifold M is projective

invariant with respect to a fixed volume form on M . Here, the Ricci curvature

is defined as the trace of the Riemann curvature. The Ricci curvature, which is

defined as the trace of the Riemann curvature, plays a significant role in Finsler

geometry. The Riemann curvature is a fundamental quantity in this field and

is represented by a family of linear transformations

Ry : TxM → TxM,

where y ∈ TxM , with homogeneity Rλy = λ2Ry, for every λ > 0.

A Finsler metric (M,F ) is considered R-quadratic if its Riemann curvature

Ry is quadratic in y ∈ TxM . R-quadratic Finsler spaces are a rich class of

Finsler spaces.

In Finsler geometry, the Riemann curvature of a projective spray in a Finsler

metric (M,F ) is referred to as the Projective Riemann curvature. Similarly,

the Projective Ricci curvature is defined as the Ricci curvature of the projective

spray.

In this paper, the focus is on studying Projective Riemann quadratic (PR-

quadratic) Finsler metrics. In particular, a special class of PR-quadratic Finsler

metrics, called SPR-quadratic Finsler metrics, is considered. It is proved that,

this class of Finsler metrics contains the class of Douglas-Weyl metrics (DW -

metrics). The class of DW -metrics is closed under projective changes and is

equal to the intersection of two classes of Douglas metrics and Weyl metrics.

In special case, it is proved that,

{DW −metrics} ( {SPR− quadratic metrics} ( {Weyl metrics} (1.1)

The Weyl and Douglas curvatures of PR-quadratic Finsler metrics are also

considered. It is shown that a PR-quadratic Finsler metrics is of scalar curva-

ture if and only if it is of SPR-quadrartic. Moreover, It is proved that Every

PR-quadratic Finsler metric is a GDW -metric.

In the paper, the vertical and horizontal derivatives with respect to the

Berwald connection are denoted by ”.” and ”|”, respectively.
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2. Preliminaries

A Finsler metric on a manifold M is a non-negative function F on TM

having the following properties

(a) F is C∞ on TM \ {0},
(b) F (λy) = λF (y), ∀λ > 0, y ∈ TM ,

(c) For each y ∈ TxM , the following quadratic form gy on TxM is positive

definite,

gy(u, v) :=
1

2

[
F 2(y + su+ tv)

]∣∣∣
s,t=0

, u, v ∈ TxM. (2.1)

To measure the non-Euclidean feature of Fx, define Cy : TxM×TxM×TxM →
R by

Cy(u, v, w) :=
1

2

d

dt

[
gy+tw(u, v)

]∣∣∣
t=0

, u, v, w ∈ TxM. (2.2)

The family C := {Cy}y∈TM\{0} is called the Cartan torsion.

A curve c = c(t) is called a geodesic if it satisfies

d2ci

dt2
+ 2Gi(c, ċ) = 0, (2.3)

where ċ = dc
dt and Gi = Gi(x, y) are local functions on TM given by

Gi(x, y) :=
1

4
gil(x, y)

{ ∂2F 2

∂xk∂yl
yk − ∂F 2

∂xl

}
, y ∈ TxM. (2.4)

and called the spray coefficients of F . The Riemann curvatureRy = Rik
∂
∂xi

⊗
dxk

of F is given by

Rik = 2
∂Gi

∂xk
− ∂2Gi

∂xm∂yk
ym + 2Gm

∂2Gi

∂ym∂yk
− ∂Gi

∂ym
∂Gm

∂yk
.

For the Riemann curvature of Finsler metric F one has [8]

Rikl =
1

3
(Rik.l −Ril.k), and Rj

i
kl = Rikl.j . (2.5)

A Finsler metric F on a manifold M is called a Berwald metric if Gi are

quadratic in y ∈ TxM for all x ∈M . For y ∈ TxM0, define

By : TxM ⊗ TxM ⊗ TxM → TxM

By(u, v, w) = Bj
i
klu

jvkwl
∂

∂xi
,

where Bijkl = ∂3Gi

∂yj∂yk∂yl
. Put

Ey : TxM ⊗ TxM −→ R

Ey(u, v) = Ejku
jvk,
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where Ejk = 1
2Bj

m
km, u = ui ∂

∂xi , v = vi ∂
∂xi and w = wi ∂

∂xi . B and E are

called the Berwald curvature and mean Berwald curvature, respectively. F is

called a Berwald metric and Weakly Berwald (WB) metric if B = 0 and E = 0,

respectively [9].

The S-curvature S = S(x, y) was introduced as follows [9]

S(x, y) =
d

dt
[τ
(
γ(t), γ′(t)

)
]|t=0,

where τ(x, y) is the distortion of the metric F and γ(t) is the geodesic with

γ(0) = x and γ′(0) = y on M . It is considerable that [8]

Eij =
1

2
S.i.j . (2.6)

The non-Riemannian quantity χ-curvature is denoted by χ = χjdx
j and defined

as

χj = S.j|my
m − S|j = −1

3
(2Rmk.m −Rmm.k). (2.7)

Let

Dj
i
kl = Bj

i
kl −

1

n+ 1

∂3

∂yj∂yk∂yl
(
∂Gm

∂ym
yi).

It is easy to verify that D := Dj
i
kldx

j⊗ ∂
∂xi ⊗dxk⊗dxl is a well-defined tensor

on slit tangent bundle TM0. It is known as the Douglas tensor, referred to as D.

The Douglas tensor D is a non-Riemannian projective invariant, namely, If we

consider two projectively equivalent Finsler metrics F and F̄ , with a positively

y-homogeneous projective factor P = P (x, y) of degree one, it follows that the

expression

Gi = Ḡi + Pyi,

holds true. Moreover, this implies that the Douglas tensor associated with F

is equal to the Douglas tensor associated with F̄ [4], [8]. One could easily show

that

Dj
i
kl = Bj

i
kl −

2

n+ 1

{
Ejkδ

i
l + Ejlδ

i
k + Eklδ

i
j + Ejkly

i
}
. (2.8)

Douglas curvature, Dj
i
kl, is a projective invariant constructed from the Berwald

curvature. Finsler metrics with Dj
i
kl = 0 are called Douglas metrics. The met-

rics with the following condition are called GDW metric which are projective

invariant.

Dj
i
kl|my

m = Tjkly
i,

for some tensors Tjkl.

Lemma 2.1. [8] Let F and F̄ be two projectively equivalent Finsler metrics on

a manifold M . Then, their Riemann curvatures are related by

R̄ik = Rik + Eδik + τky
i, (2.9)

where

E = P 2 − P|mym, τk = 3(P|k − PP.k) + E.k.
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Here P|k denotes the covariant derivative of projective factor P with respect to

F̄ .

For a spray G on an n-dimensional manifold M and given a volume form

dV on M , we can construct a new spray by [8]

G̃ := G+
2S

n+ 1
Y.

The spray G̃ is called the projective spray of (G, dV ). In local coordinates,

G̃i = Gi − S

n+ 1
yi. (2.10)

The projective Ricci curvature of (G, dV ) is defined as the Ricci curvature of

G̃, namely,

PRic(G,dV ) := RicG̃.

Then by a simple computation one has

PRic(G,dV ) = Ric+ (n− 1)
{ S|0

n+ 1
+ [

S

n+ 1
]2
}
, (2.11)

where Ric = RicG is the Ricci curvature of the spray G, S = S(G,dV ) is the

S-curvature of (G, dV ) and S|0 is the covariant derivative of S along a geodesic

of G. It is known that G̃ remains unchanged under a projective change of G

with dV fixed, thus PRic(G,dV ) = RicG̃ is a projective invariant of (G, dV ).

For a Finsler metric (M,F ), the Riemann curvature of a projective spray is

called projective Riemann curvature,

PRik(G,dV ) = RikG̃.

A Finsler metric (M,F ) is called PR-quadratic Finsler metric if

PRj
i
kl.m = 0.

3. Finsler metrics of PR-quadratic type

In this section, we dive into the fascinating world of PR-quadratic Finsler

metrics. These metrics are a special type of Finsler metrics that possess certain

unique properties. By carefully considering these metrics, we can gain valuable

insights and further our understanding of the mathematical principles behind

them.

Lemma 3.1. Let Finsler metric (M,F ) is of PR-quadratic type. Then

PRj
i
kl = µjkδ

i
l − µjlδik + (µlk − µkl)δij + tj

i
kl. (3.1)



120 N. Sadeghzadeh

µkl and tj
i
kl on M can be expressed as µkl = µkl(x) and tj

i
kl = tj

i
kl(x).

Moreover, tj
i
kl do not include any terms involving δij, δ

i
k, δil, or yi and one

has

tj
i
kl = −tjilk, tj

i
kl + tk

i
lj + tl

i
jk = 0. (3.2)

Proof. By using the assumption that G̃i = Gi − S/(n+ 1)yi and referring to

(2.5) as well as (2.9), it becomes possible to establish the Projective Riemann

curvature of F as follows.

PRikl = Rikl +
1

3
(τk − E.k)δil −

1

3
(τl − E.l)δik +

1

3
(τk.l − τl.k)yi, (3.3)

where

E =
S2

(n+ 1)2
+

S|0

n+ 1
, τk = −3

SS.k
(n+ 1)2

− 3
S|k

n+ 1
+ E.k.

It is known that

E.k =
1

n+ 1

[ (S2).k
n+ 1

+ (S|k + S|m.ky
m)
]
. (3.4)

On the other hand,

τk.l = −
3S|k.l

n+ 1
− 3(S2).k.l

2(n+ 1)2
+ E.k.l. (3.5)

It should be noted that one might discover that

τk.l − τl.k = − 3

n+ 1

(
S|k.l − S|l.k

)
, (3.6)

τk − E.k = − 3

n+ 1
(S|k +

SS.k
n+ 1

), (3.7)

and

τk +
E.k
2

=
3

2(n+ 1)
χk, (3.8)

where χk is the χ-curvature of F defined as (2.7). Now put

Rikl = akδ
i
l − alδik + bkly

i + tikl,

where the factors δil, δ
i
k and yi are not present in tikl. After placing the

equation mentioned above in (3.3), the result is obtained.

PRj
i
kl = (ak +

1

3
(τk − E.k).jδ

i
l − (al +

1

3
(τl − E.l).jδik (3.9)

+(bkl +
1

3
(τk.l − τl.k))δij + (bkl +

1

3
(τk.l − τl.k)).jy

i + tikl.j .

Upon discovering that F is of PR-quadratic type, one can deduce that

(ak +
1

3
(τk −E.k)).j = µjk, bkl = −1

3
(τk.l − τl.k) + σkl(x), tikl.j = tj

i
kl(x),
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where µjk = µjk(x), σkl = σkl(x) and tj
i
kl = tj

i
kl(x) exhibit dependence on

M , where σkl satisfies the condition σkl = −σlk and tj
i
kl satisfies the condition

tj
i
kl = −tjilk. Following that, we obtain [8]

PRj
i
kl = µjkδ

i
l − µjlδik + σklδ

i
j + tj

i
kl. (3.10)

The following identities hold for the Riemann curvature of G̃i = Gi−S/(n+ 1)yi,

PRj
i
kl + PRk

i
lj + PRl

i
jk = 0, PRj

i
kl = −PRjilk.

After considering the previous identity and referring to equation (3.10), it be-

comes apparent that we can readily deduce the result referenced in equation

(3.2). The previous identity and (3.10) produce

σkl = −σlk = µlk − µkl,

which (3.1) is determined. �

An interesting topic to delve into next is the relationship between PR-

quadratic andGDW -metrics. The remarkable finding is that every PR-quadratic

Finsler metric can be regarded as a GDW -metric.

Proposition 3.2. The Douglas curvature of PR-quadratic Finsler metric sat-

isfies the following equation

Dj
i
kl|0 =

1

n+ 1
S.rDj

r
kly

i,

where Dj
i
kl|0 = Dj

i
kl|my

mand S = S(x, y) denotes the S-curvature of F .

Proof. By employing the assumption, which states that F is PR-quadratic, as

well as the subsequent Ricci identity [8]

PBj
i
kl||m − PBjikm||l = PRj

i
ml.k,

we conclude

PBj
i
kl||m − PBjikm||l = 0,

where ”||” denotes the horizontal derivative with respect to Berwald connection

of G̃i, while PBj
i
kl denotes the Berwald tensor of G̃i. By referring to (2.10)

and (2.8), it becomes evident that

PBj
i
kl = Dj

i
kl.

It indicates that

Dj
i
kl||m −Dj

i
km||l = 0. (3.11)

Nevertheless, based on (2.10), we have

Dj
i
kl||m = Dj

i
kl|m +

1

n+ 1
{S.jDm

i
kl + S.kDj

i
ml + S.lDj

i
km

+S.mDj
i
kl + SDj

i
kl.m − S.rDj

r
klδ

i
m − S.r.mDj

r
kly

i}.
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It can be derived from the two equations above that

Dj
i
kl|m −Dj

i
km|l =

1

n+ 1

{
S.rDj

r
klδ

i
m − S.rDj

r
kmδ

i
l

+(S.r.mDj
r
kl − S.r.lDj

r
km)yi

}
.

Now, contracting the aforementioned equation by ym leads to the desired out-

come. �

3.1. Douglas-Weyl (DW )-metric. DW -metrics possess certain unique prop-

erties that make them particularly interesting to study. By being the inter-

section of Douglas and Weyl metrics, they inherit some characteristics from

both classes. To further understand these DW -metrics, we investigate their

relationship with the Projective Riemann curvature tensor. In particular, we

observe that these metrics fall within the realm of PR-quadratic Finsler met-

rics. This class encompasses a wide range of Finsler metrics that exhibit cer-

tain quadratic properties with respect to projective transformations. Within

the PR-quadratic Finsler metric class, we identify a specific subset known as

SPR-quadratic metrics. These metrics possess additional special properties

that make them particularly interesting and worthy of investigation. In partic-

ular, we have

Theorem 3.3. Let F be a Finsler metric on a connected manifold M (n > 2).

If F is a DW -metric then it is PR-quadratic with

PRik = θpqy
q(δiky

p − δpkyi), (3.12)

where θpq = θqp = θpq(x).

Finsler metrics characterized by the projective Riemann curvature in the ex-

pression (3.12) are referred to as Special PR-quadratic (SPR-quadratic) Finsler

metrics.

Proof. Let F be a Finsler metric of DW type. Then the vanishing of the Weyl

curvature implies that F is of scalar flag curvature.

Rik = λ(F 2δik − ykyi),

where λ = λ(x, y) is a function on TM .

Now, by referring to (2.5), one can deduce the validity of the subsequent

identity

Rj
i
ml =

(F 2

3
λ.l + λyl

)
.j
δim −

(F 2

3
λ.m + λym

)
.j
δil (3.13)

+
1

3

(
λ.myl − λ.lym

)
δij +

1

3

(
λ.myl − λ.lym

)
.j
yi.
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In [8], we can find the following equation.

Rj
i
ml.k = Bj

i
kl|m −Bjikm|l. (3.14)

However, as assumed, F belongs to Douglas classification. Then with reference

to (2.8), it can be concluded

Bj
i
kl =

2

n+ 1

(
Ejkδ

i
l + Ejlδ

i
k + Eklδ

i
j + Ejkly

i
)
. (3.15)

(3.13), (3.14) and (3.15) yield

(3.16)

(1) (F
2

3 λ.l + λyl).j.k = − 2
n+1Ejk|l,

(2) 1
3 (λ.myl − λ.lym).k = − 2

n+1 (Ekm|l − Ekl|m),

(3) 1
3 (λ.myl − λ.lym).j.k = − 2

n+1 (Ejkm|l − Ejkl|m).

According to the reference (2.6) and the initial equation in (3.16), one discovers

− 2

n+ 1
Ejk|l = − 1

n+ 1
S.j.k|l = − 1

n+ 1
(S|l.j.k + S.rBj

r
kl)

=
(F 2

3
λ.l + λyl

)
.j.k
. (3.17)

Then

− 1

n+ 1
S.rBj

r
kl =

(F 2

3
λ.l + λyl +

S|l

n+ 1

)
.j.k
.

Noting (3.15), one gets − 1
n+1S.rBj

r
kl = −( S2

2(n+1)2 ).j.k.l and then(F 2

3
λ.l + λyl +

S|l

n+ 1
+

SS.l
(n+ 1)2

)
.j.k

= 0.

Then there exists a function θkl = θkl(x) on M such that

θkl =
(F 2

3
λ.l + λyl +

S|l

n+ 1
+

SS.l
(n+ 1)2

)
.k
. (3.18)

Thus

λF 2 +
S|0

n+ 1
+

S2

(n+ 1)2
= θpqy

pyq,

which based on (2.9), it is equivalent to

E + λF 2 = θpqy
pyq. (3.19)

Now we show that θkl = θlk. In the beginning, it is worth mentioning that

according to (3.18), one obtains

θkl − θlk =
1

n+ 1
(S|l.k − S|k.l)−

1

3
(λ.lyk − λ.kyl). (3.20)

The contraction of the above equation by yk, with reference to (2.7), produces

−(θkl − θlk)yk =
1

n+ 1
χl +

F 2

3
λ.l.
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Assuming that λ is the scalar curvature of F , utilizing (2.7) will produce

χl = −n+ 1

3
F 2λ.l. (3.21)

The two equations above demonstrate that

θkl = θkl. (3.22)

Now, noting (3.8) and (3.21), we have

τk − λyk = −1

2
(E + λF 2).k,

which after observing (3.22) and (3.19), one reaches the following.

τk − λyk = −θpkyp. (3.23)

By its contradiction by yk, one has

λF 2 + E = θpqy
pyq.

By putting (3.19) and (3.23) in (2.9), one gets PRik = (λF 2 + E)δik + (τk −
λyk)yi = θpqy

pyq − θpkypyi. This expression, based on (2.5), allows us to find

PRj
i
kl = θjlδ

i
k − θjkδil .

�
According to the theorem mentioned above, the class of DW -metrics is a subset

of the class of SPR-quadratic Finsler metrics that have been specified in (3.12).

It can be demonstrated below that each Finsler metric which is SPR-quadratic

has scalar flag curvature. To put it in another way, the class of SPR-quadratic

Finsler metrics is closed under projective transformations with a fixed volume

form dV , and one must fulfill

{DW −metrics} ⊆ {SPR− quadratic metrics} ⊆ {Weyl metrics}.

Theorem 3.4. Let F be a SPR-quadratic Finsler metric on a manifold M .

Then it is of scalar flag curvature.

Proof. Provided that F is classified as SPR-quadratic, a function θpq = θqp
will exist on M such that

PRik = θpqy
pyqδik − θkpypyi. (3.24)

By considering the definition provided by [8] for Weyl curvature and acknowl-

edging its characteristic as a projective invariant, one obtains

W i
k = PW i

k = PRik−
1

n− 1
PRmmδ

i
k−

1

n+ 1

(
PRmk.m−

1

n− 1
PRmm.k

)
yi, (3.25)

where PW i
k and W i

k are the Weyl tensor related to G̃i and Gi, respectively.

By substituting (3.24) in the equation above, we obtain PW i
k = W i

k = 0. The

prior equation implies that F is of scalar flag curvature. �
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Corollary 3.5. A PR-quadratic Finsler metric is of scalar curvature if and

only if it is of SPR-quadratic type.

Proof. Let (M,F ) be considered as PR-quadratic. Using reference (3.25) and

Lemma (3.1), the calculation of the Weyl curvature becomes possible as follows.

W i
k = PW i

k = t0
i
k0 −

1

n− 1
t0
m
m0δ

i
k +

(n− 2

n+ 1
tk
m
m0 −

2n− 1

n− 1
t0
m
mk

)
yi.

As shown in the proof procedure of Lemma 3.1, tikl = tj
i
kly

j do not include

any terms involving δij , δ
i
k, δil and yi. Then the Weyl curvature vanishes if

and only if t0
i
k0 = 0, and this point combined with Lemma (3.1) gives

PRik = −µ00δ
i
k + (2µ0k − µk0)yi,

where µ00 = µpqy
pyq and µk0 = µkpy

p. By substituting θpq = µqp − 2µpq, we

arrive at the desired conclusion. �

In conclusion, the examples provided demonstrate that DW -metrics are

strictly contained within SPR-quadratic Finsler metrics, and these Finsler

metrics are in turn strictly contained within Weyl metrics. In other words,

(1.1) is proved. Presented here is the SPR quadratic Finsler metric, which

does not fall under the category of DW -metric.

Example 3.6. Put

Ω = {(x, y, z) ∈ R3|x2+y2+z2 < 1}, p = (x, y, z) ∈ Ω, y = (u, v, w) ∈ TpΩ.

Define the Randers metric F = α+ β by

α =

√
(−yu+ xv)2 + (u2 + v2 + w2)(1− x2 − y2)

1− x2 − y2
, β =

−yu+ xv

1− x2 − y2
.

The above Randers metric has vanishing flag curvature K = 0 and S-curvature

S = 0. F has zero Weyl curvature then F is of GDW metric. But β is not

closed then F is not of Douglas type.

The subsequent example provides a clear indication that the class of SPR-

quadratic Finsler metrics is distinct from the class of Weyl metrics, with the

former being a subset of the latter.

Example 3.7. [8] The family of Randers metrics on S3 constructed by Bao-

Shen are weakly Berwald which are not Berwaldian. Denote generic tangent

vectors on S3 as

u
∂

∂x
+ v

∂

∂y
+ z

∂

∂z
.

The Finsler function for Bao-Shen’s Randers space is given by

F (x, y, z;u, v, w) = α(x, y, z;u, v, w) + β(x, y, z;u, v, w),
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with

α =

√
λ(cu− zv + yw)2 + (zu+ cv − xw)2 + (−yu+ xv + cw)2

1 + x2 + y2 + z2
,

β =
±
√
λ− 1(cu− zv + yw)

1 + x2 + y2 + z2
,

where λ > 1 is a real constant. The above Randers metric has vanishing S-

curvature and with positive constant flag curvature 1. Due to vanishing S-

curvature, G̃i equals Gi, followed by

PRik = Rik = F 2δik − ykyi,

which does not possess SPR-quadratic property, unless F is Riemannian.

References

1. H. Akbar-Zadeh, Sur les espaces de Finsler á courbures sectionnelles constantes, Bulletins
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