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Abstract. In this paper, we investigate pseudo-Riemannian manifolds those

eigenvalues of the Weyl conformal Jacobi operators are constant on the unit

sphere bundles. Using a result of [4], we give an explicit construction of con-

formally Osserman manifold which is not locally conformally flat.
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1. Introduction

Let (M, g) be a pseudo-Riemannian manifold of dimension m with Levi-

Civita connection ∇. Let R(X,Y ) := ∇X∇Y − ∇Y∇X − ∇[X,Y ] be the cur-

vature operator and R(X,Y, Z, T ) = g(R(X,Y )Z, T ) its Riemann curvature
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tensor. The Jacobi operator is defined by JR(X) : Y 7→ R(Y,X)X. It is a

self-adjoint operator and it plays an important role in the curvature theory.

The geodesic deviation is measured by this part of the curvature tensor and

because of its fundamental role in the Jacobi equation, many geometric prop-

erties can be derived from the knowledge of the Jacobi operators [10, 11]. Since

for each vector X, the Jacobi operator is a self-adjoint operator, the study of

its eigenvalues is of great interest. In the Lorentzian case especially, they play

a fundamental role in the construction of mathematical models in general rela-

tivity. On the other hand, the eigenvalues of the Jacobi operator depend both

on a point p ∈M and a direction X ∈ TpM .

Let S±(M, g) be the pseudo-sphere bundles of unit spacelike and timelike

tangent vectors. Then (M, g) is said to be spacelike Osserman (respectively

timelike Osserman) if the eigenvalues of JR(·) are constant on the unit sphere

bundles S+(M, g) (respectively S−(M, g)). The notions of spacelike Osserman

and timelike Osserman are equivalent and if (M, g) is either of them, then

(M, g) is said to be Osserman. Many mathematicians have studied Osserman

manifolds (see e.g. [11] for the Riemannian case and [8, 9, 10] for pseudo-

Riemannian case).

Let {ei} be a local frame for the tangent bundle. We set gij := g(ei, ej) and

let gij be the inverse matrix. The Ricci operator ρ, the associated Ricci tensor

ρ(·, ·), the scalar curvature τ and the Weyl conformal curvature operator W
are given by

ρX :=
∑
i,j

gijR(X, ei)ej ,

ρ(X,Y ) := g(ρX, Y ),

τ :=
∑
i,j

gijρ(ei, ej),

W(X,Y )Z := R(X,Y )Z +
τ

(m− 1)(m− 2)
R0(X,Y )Z

+
1

(m− 2)
L(X,Y )Z.

where

R0(X,Y )Z := g(Y, Z)X − g(X,Z)Y,

L(X,Y )Z := g(ρY, Z)X − g(ρX,Z)Y + g(Y, Z)ρX − g(X,Z)ρY,

for X,Y, Z ∈ X(M). The Weyl conformal curvatureW as a conformal invariant

is important in the understanding of conformal pseudo-Riemannian geometry.

It is well known that an m-dimensional pseudo-Riemannian manifold, m ≥ 4,

is conformally flat if and only if its Weyl conformal curvature vanishes. Note

that, a Riemannian manifold (M, g) is said to be locally conformal flat if around

every point p ∈ M , there exists a metric g′ which is conformal to g and g′ is
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flat. In [5], multidimensional cosmological solutions which are locally confor-

mally flat are described. These solutions correspond to generalizations of the

Friedmann-Robertson-Walker cosmology. Moreover, the authors [6], construct

new examples of complete locally conformally flat manifolds of negative curva-

ture by means of warped product and multiply warped product structures.

The Weyl conformal Jacobi operator JW(·) is defined by

JW(X)Y =W(Y,X)X, (1.1)

for X,Y ∈ S±(M, g). We say that (M, g) is conformally Osserman if the eigen-

values of JW(·) are constant on S±(M, g) and (M, g) is nilpotent conformally

Osserman if the conformal Jacobi operator of (M, g) is nilpotent.

In the paper [2], the authors characterize manifolds which are locally confor-

mally equivalent to either complex projective space or to its negative curvature

dual. In particular, they classify the conformally complex space forms if the

dimension is at least 8. The authors [3] proves that a 4-dimensional oriented

Riemannian manifold is conformally Osserman if and only if it is self-dual or

anti-self dual. It is shown in [4] that the conformally Osserman condition is a

conformal invariant and that any Lorentzian [1] or odd-dimensional Riemann-

ian [2] conformally Osserman manifold is locally conformally flat. Recently,

in the paper [7], an example of a nilpotent conformally Osserman manifold of

signature (2, 2) and geodesically complete is exhibited.

Motivated by [7], we exhibit an example of pseudo-Riemannian metric of

signature (2, 2) which is conformally Osserman and is not locally conformally

flat. In section 2, we will present some results concerning conformally spacelike

and timelike Jordan Osserman manifolds. In section 3, we describe the metric

that we considered.

2. Conformally Osserman manifolds

The study of conformally Osserman manifolds was started in [2] and then

continued in [1, 3, 4, 12]. We say that (M, g) is conformally Osserman if the

eigenvalues of the Weyl conformal Jacobi operator JW are constant on the unit

fiber spheres.

Recall that two metrics g1 and g2 are said to be conformally equivalent if

there is a positive scaling function α ∈ C∞(M) so that g1 = αg2. We let

[g] be the set of all pseudo-Riemannian metrics on M which are conformally

equivalent to g.

Theorem 2.1. Let g1 and g2 be conformally equivalent metrics on M . Then

(M, g1) is conformally Osserman if and only if (M, g2) is conformally Osser-

man.
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We have the following result for later use.

Theorem 2.2. If (M, g) is Einstein, then (M, g) is conformally spacelike (re-

spectively timelike) Jordan Osserman if and only if (M, g) is pointwise spacelike

(respectively timelike) Jordan Osserman.

The classification is complete in certain settings:

Theorem 2.3. [4] Assume either that (M, g) is an odd dimensional Riemann-

ian manifold or that (M, g) is a Lorentzian manifold. Then (M, g) is confor-

mally spacelike Jordan Osserman if and only if (M, g) is conformally flat.

Any local rank 1 Riemannian symmetric space is necessarily conformally Os-

serman since the group of local isometries acts transitively on the unit sphere

bundle. The authors [4] conjecture that the converse holds; this is the analogue

of the Osserman conjecture in this setting:

Conjecture: A connected Riemannian manifold (M, g) is conformally Osser-

man if and only if (M, g) is locally conformally equivalent to a rank 1 symmetric

space.

This conjecture holds if m is odd. The situation is considerably more com-

plicated in the higher signature setting. There are conformally spacelike Jordan

Osserman manifolds which are not conformally flat.

In the paper [2], the authors characterize manifolds which are locally confor-

mally equivalent to either complex projective space or to its negative curvature

dual.

Theorem 2.4. [2] Let (M, g) be a conformally Osserman Riemannian manifold

of dimension m.

(1) If m is odd, then (M, g) is conformally flat.

(2) If m = 4k + 2 ≥ 10 and if p is a point of M where Wp 6= 0, then there

is an open neighborhood of p in M which is conformally equivalent to

an open subset of either complex projective space with the Fubini-Study

metric or its negative curvature dual

In [3], the following characterization in dimension four is obtained :

Theorem 2.5. [3] Let (M, g) be a 4-dimensional oriented Riemannian mani-

fold. The followin conditions are equivalent:

(1) (M, g) is conformally Osserman.

(2) (M, g) is self-dual or anti-self dual.

In [1], the author proves that in Lorentzian manifolds of dimension greater

than three, the conformally Osserman condition is equivalent to the confor-

mally flat condition. Also it is proved that, in the Lorentzian setting, timelike
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conformally Osserman manifolds are spacelike conformally Osserman manifolds

and vice versa.

Recently, The author of the paper [12] answers some part of the conjecture

made by Blazic and Gilkey that a conformally Osserman manifold of dimension

n 6= 3, 4, 16 is locally conformally equivalent either to a Euclidean space or to

a rank-one symmetric space.

Theorem 2.6. [12] A connected C∞ Riemannian conformally Osserman man-

ifold of dimension n 6= 3, 4, 16 is locally conformally equivalent to a Euclidean

space or to a rank-one symmetric space

3. Four dimensional of conformally Osserman manifolds

Let M = R4 be the 4-dimensional Euclidean space with usual coordinates

(u1, u2, u3, u4). Then D1 = span{∂1, ∂2} and D2 = span{∂3, ∂4} define two

distributions of TM . The splitting TM = D1 ⊕ D2 is just the usual splitting

TR4 = TR2⊕TR2. We define a pseudo-Riemannian metric of neutral sinature

(2, 2) by setting

g(f1,f2,h) = u3f1(u2)du1 ⊗ du1 + u4f2(u1)du2 ⊗ du2
+[du1 ⊗ du2 + du2 ⊗ du1]

+[du1 ⊗ du3 + du3 ⊗ du1]

+[du2 ⊗ du4 + du4 ⊗ du2], (3.1)

where f1 and f2 are smooth real valued functions satisfying

∂2f1 + ∂1f2 = 0. (3.2)

Furthermore, the distribution D2 is totally isotropic with respect to the pseudo-

Riemannian metric g(f1,f2,h).

The non zero Christoffel symbols of the pseudo-Riemannian g(f1,f2,h) are

given by

Γ1
11 = −f1

2
,

Γ3
11 =

u3f
2
1

2
,

Γ4
11 = −u3∂2f1

2
+
f1
2
,

Γ3
12 =

u3∂2f1
2

,

Γ4
12 =

u4∂1f2
2

,

Γ3
13 =

f1
2
,
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Γ4
24 =

f2
2

Γ2
22 = −f2

2
,

Γ3
22 = −u4∂1f2

2
+
f2
2
,

Γ4
22 =

u4f
2
2

2
. (3.3)

From (3.2) and (3.3), the only non zero components of the covariant derivatives

are given by

∇∂1∂1 = −f1
2
∂1 +

u3f
2
1

2
∂3 +

(
− u3∂2f1

2
+
f1
2

)
∂4;

∇∂1∂3 =
f1
2
∂3;

∇∂2∂2 = −f2
2
∂2 +

(u4∂2f1
2

+
f2
2

)
∂3 +

u4f
2
2

2
∂4;

∇∂2∂4 =
f2
2
∂4

∇∂1∂2 =
u3∂2f1

2
∂3 −

u4∂2f1
2

∂4. (3.4)

From (3.2) and (3.4), we obtain that the non zero components of the curvature

operator are

R(∂1, ∂2)∂1 =
∂2f1

2
∂1 −

u3f1∂2f1
2

∂3

+
(u3∂222f1

2
+
u3f2∂2f1

4
− u4f1∂2f1

4
− ∂2f1

2
− f1f2

4

)
∂4,

R(∂1, ∂2)∂2 =
∂2f1

2
∂2 −

u4f2∂2f1
2

∂4

−
(u3∂222f1

2
+
u3f2∂2f1

4
− u4f1∂2f1

4
− ∂2f1

2
− f1f2

4

)
∂3,

R(∂1, ∂2)∂3 = −∂2f1
2

∂3,

R(∂1, ∂2)∂4 = −∂2f1
2

∂4,

R(∂1, ∂3)∂1 =
∂2f1

2
∂4,

R(∂1, ∂3)∂2 = −∂2f1
2

∂3,

R(∂2, ∂4)∂1 =
∂2f1

2
∂4,

R(∂2, ∂4)∂2 = −∂2f1
2

∂3. (3.5)
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And from (3.5), we obtain that the non zero components of the (0, 4)− curva-

ture tensor are given by

R(∂1, ∂2, ∂1, ∂2) =
u3∂

2
22f1
2

+
u3f2∂2f1

4
− u4f1∂2f1

4
− ∂2f1

2
− f1f2

4
,

R(∂1, ∂2, ∂2, ∂1) = −
(u3∂222f1

2
+
u3f2∂2f1

4
− u4f1∂2f1

4
− ∂2f1

2
− f1f2

4

)
R(∂1, ∂2, ∂1, ∂3) =

∂2f1
2

,

R(∂1, ∂2, ∂3, ∂1) = −∂2f1
2

,

R(∂1, ∂2, ∂2, ∂4) =
∂2f1

2
,

R(∂1, ∂2, ∂4, ∂2) =
∂2f1

2
. (3.6)

From (3.6), we can see that all components of the Ricci tensor vanishes. Hence

the scalar curvature is zero. We have the following result.

Proposition 3.1. The pseudo-Riemannian metric (3.1) is Einstein.

If X =
∑4
i=1 αi∂i is a tangent vector on M , then the associated Jacobi

operator JR(X) = R(·, X)X defines a self-adjoint endomorphism of the tangent

space at each point of M given by

JR(X)(·) = α2
1R(·, ∂1)∂1 + α1α2R(·, ∂1)∂2 + α1α3R(·, ∂1)∂3 + α1α4R(·, ∂1)∂4

+ α1α2R(·, ∂2)∂1 + α2
2R(·, ∂2)∂2 + α2α3R(·, ∂2)∂3 + α2α4R(·, ∂2)∂4

+ α1α3R(·, ∂3)∂1 + α2α3R(·, ∂3)∂2 + α2
3R(·, ∂3)∂3 + α3α4R(·, ∂3)∂4

+ α1α4R(·, ∂4)∂1 + α2α4R(·, ∂4)∂2 + α3α4R(·, ∂4)∂3 + α2
4R(·, ∂4)∂4.

The matrix associated to Jacobi operator JR(X) with respect to the basis

{∂i, i = 1, 2, 3, 4} is given by

(JR(X)) =


j11 j12 j13 j14
j21 j22 j23 j24
j31 j32 j33 j34
j41 j42 j43 j44

 , (3.7)

where

j11 = α1α2
∂2f1

2
;

j21 = −α2
2

∂1f2
2

;

j31 = α2
2

∂1f2
2
− α2α3∂2f1 − α2

2

u3∂
2
2f1

2
− α2

2

u3f2∂2f1
4

−α1α2
u3f1∂2f1

2
− α2

2

u4∂
2
1f2

2
− α2

2

u4f1∂1f2
4

− α2
2

f1f2
4

;
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j41 = α2α4
∂1f2

2
− α1α2

∂2f1
2

+ α1α3
∂2f1

2
+ α1α2

u3∂
2
2f1

2

+α1α2
u3f2∂2f1

4
+ α1α2

u4∂
2
1f2

2
+ α1α2

u4f1∂1f2
4

+α2
2

u4f2∂1f2
2

− α1α2
f1f2

4
;

j12 = −α2
1

∂2f1
2

;

j22 = α1α2
∂1f2

2
;

j32 = −α1α2
∂1f2

2
+
α2α4∂1f2

2
+ α1α3

∂2f1
2

+ α1α2
u3∂

2
2f1

2

+α2
1

u3f1∂2f1
2

+ α1α2
u3f2∂2f1

4
+ α1α2

u4∂
2
1f2

2

+α1α2
u4f1∂1f2

4
− α1α2

f1f2
4

;

j42 = α2
1

∂2f1
2
− α1α4∂1f2 − α2

1

u3∂
2
2f1

2
− α2

1

u3f2∂2f1
4

−α2
1

u4∂
2
1f2

2
− α2

1

u4f1∂1f2
4

− α1α2
u4f2∂1f2

2
+ α2

1

f1f2
4

;

j13 = 0;

j23 = 0;

j33 = α1α2
∂2f1

2
;

j43 = −α2
1

∂2f1
2

;

j14 = 0;

j24 = 0;

j34 = −α2
2

∂1f2
2

;

j44 = α1α2
∂1f2

2
.

It follows from the matrix of the Jacobi operator JR(X), where X is a non null

vector on M that te characteristic polynomial satisfies Pλ(JR(X)) = λ4.

Proposition 3.2. The pseudo-Riemannian metric (3.1) is Osserman.

From Theorem 2.2, by using Propositions 3.1 and 3.2 the pseudo-Riemannian

metric (3.1) is conformally Osserman.

Acknowledgment: The paper is dedicated to the memory of Professor Lancinè
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