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Abstract. Using the Lie classical method, the potential symmetry of the gen-

eralized hyperbolic quasilinear and Boussinesq equations is investigated. To

find these symmetries in specific cases, we study various scientific examples

that admit these symmetries. In addition, using this method, the potential

symmetries of the conservative forms of the Boussinesq equation is determined.
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1. Introduction

In various applied sciences, including engineering sciences, mathematical

physics, quantum and particle physics, physical chemistry, etc., conversation

laws are examined for a vast domain of nonlinear partial differential equations

(PDEs) [15, 13]. Generally, the principal laws in physics that express that

discrete quantities of an isolated system stay stable over time are called con-

servation laws.

The Lie symmetry method, known as the classical Lie method, is a basic

method in this field. By this method, we can reduce the order of ordinary

differential equations and also reduce PDEs and convert them to ODEs in cer-

tain cases [7, 21, 22]. In recent decades, due to the widespread applications of
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science, Lie classical groups, especially potential symmetries, have been con-

sidered by researchers [8, 23]. Furthermore, relation between a conservation

law and symmetries perform a significant work in the analysis of qualitative

attributes of the solutions [6, 19, 24, 25, 26]. Undoubtedly, the history of the

potential symmetries go back to Bluman et al., in 1988 [3]. The potential proce-

dure is used to earn an extensive range of symmetries of PDE, that is rewritten

as a conservative form. Scientists studied the Lie symmetries of the potential

system, which is created by adding potential variables as extra unfamiliar func-

tions to the equation. By calculation the Lie point groups of transformation,

that operate on the various spaces of the dependent and independent variables

and their derivatives of the system, an other set of symmetries, so called po-

tential symmetries, are obtained. These symmetries are different from point

and Lie-Bäcklund symmetries [11]. Approximate symmetries are another type

of symmetries that are used to obtain solutions for equations that have a small

parameter [9, 10]. Invariant solutions for potential symmetries lead to finding

more solutions for the PDE under study. Any Lie group results in potential

symmetries, provided that at least one of the generators clearly depends on the

potential variables. In searching for new solutions with the reduction method,

these symmetries will be useful [4, 18, 16, 20, 24].

This study is dedicated to the potential symmetry analysis of generalized

quasilinear hyperbolic equations, which is another type of second-order wave

equations,

r(x)utt = [s(x, u)ut + k(x, u)]x. (1.1)

Here r ∈ C1(R) and s, k ∈ C1(R2) are nonzero functions as sx = kx = 0. In

[20], an analysis of potential symmetries has been obtained for a type of this

equation.

In continuation, the Boussinesq equation is studied. This equation is applied

to various physical phenomena, including diffusion long waves in shallow water

[5]. The main form of this equation is

utt − u2x + 3uu2x + 3u2x + αu4x = 0 (1.2)

where α is real parameter and u(t, x) is an arbitrary functional and t, x are

time and space variables respectively. Considerable interest in the Boussinesq

equation in the last few decades has led to the construction and study of many

solutions and developments of this equation. For instance, using symbolic

computation method, rogue wave solutions, three types of breather solutions

and analytical N-soliton solutions have been obtained by Ma for generalized

nonlinear Boussinesq equation [1, 14]. In [17], a complete study has been done

on different types of this equation. In the second part of this study the potential

symmetries of the conservation laws for this equation, will be obtained by the

multiplier method.
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The outline of this study is as follows. Section 2, is dedicated to recalling the

principal definitions about potential symmetry. In Section 3, these symmetries

of equation (1.1) for three scientific items are investigated. Finally, the potential

symmetries of the conservative forms of the Boussinesq equation are analyzed

in section 4.

2. Preliminaries

Assume G is a n-th order system of a PDE with independent variables (t, x)

such that x = (x1, · · · , xp) and dependent variables u = (u1, · · · , uq) as

G(t, x, u, u(1), · · · , u(n)) = 0. (2.1)

Here we denote the n-th order partial derivative of the function u by u(n). To

calculate the symmetries of equation (2.1), it is sufficient to rewrite it in the

conservative form:

Dtρ[u] +Dxψ[u] = 0, (2.2)

where

ρ[u] = ρ(t, x, u, u(1), · · · , u(n−1))

and

ψ[u] = ψ(t, x, u, u(1), · · · , u(n−1)).

Assuming the system G{t, x;u} can be explicitly rewritten in the conservative

form (2.2), a potential variable v(t, x) can be introduced as an additional unfa-

miliar function. The pair of potential equations p that derived from (2.2) are

defined as follows

vx = ρ[u], vt = −ψ[u]. (2.3)

With community of system G{t, x;u} and potential equations p, the potential

system H{t, x;u, v} are constructed. Indeed, the solution set of potential sys-

tem H{t, x;u, v} and G{t, x;u} are equal. The infinitesimal symmetries are

obtained from the following equations,

Xn(vx − ρ[u])|G = 0, Xn(vt + ψ[u])|G = 0. (2.4)

By replacing vx with ρ[u], and vt by −ψ[u] in equations (2.4), the determining

equations are created. The potential symmetries of (2.1) are resulted by solving

this equations. With the generators ξ, τ, η and ϕ, the Lie symmetry for (2.3)

is clearly defined. If the relation ξ2v + τ2v + η2v = 0 holds, point symmetries are

obtained and if ξ2v + τ2v +η2v > 0 then potential symmetries are obtained for the

equation (2.1). This symmetries give new solutions of (2.3). Finally, another

solutions of (2.1) are induced.
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3. Potential symmetry of the Hyperbolic equation

After rewriting equation (1.1) in conservative form, we get

Dt(r(x)ut)−Dx(s(x, u)ut + k(x, u)) = 0. (3.1)

Substituting a potential variable v(t, x) in (3.1), we have

vx = r(x)ut, vt = s(x, u)ut + k(x, u). (3.2)

After solving characterize system,

X1(vx − rut)|(7) = 0, X1(vt − sut − k)|(7) = 0, (3.3)

the generators are obtained. X1 is defined as

X1 = ξ
∂

∂x
+ τ

∂

∂t
+ ϕ

∂

∂u
+ η

∂

∂v
+ ϕ

(1)
1

∂

∂ux
+ ϕ

(1)
2

∂

∂ut
+ η

(1)
1

∂

∂vx
+ η

(1)
2

∂

∂vt
.(3.4)

Where
ϕ
(1)
1 = ϕx + (ϕu − ξx)ux − τxut − τuuxut − ξuu2x + ϕvvx − τvutvx − ξvuxvx,

ϕ
(1)
2 = ϕt + (ϕu − τt)ut − τuu2t − ξtux − ξuutux + ϕvvt − τvutvt − ξvuxvt,

η
(1)
1 = ηx + (ηv − ξx)vx − ξvv2x + ηuux − τxvt − τuuxvt − τvvxvt − ξuuxvx,
η
(1)
2 = ηt + (ηv − τt)vt − τvv2t + ηuut − τuutvt − ξtvx − ξuutvx − ξvvxvt.

Therefore (3.3) becomes

−
[
(ϕt + ϕuut + ϕv)vt − (ξt + ξuut + ξvvt)ux − (τt + τuut + τvvt)ut

]
f+

ηx + ηuux + ηvvx −
[
ξx + ξuux + ξvvx

]
vx −

[
τx + τuux + τvvx

]
vt = 0,

−
[
(ϕt + ϕuut + ϕv)vt − (ξt + ξuut + ξvvt)ux − (τt + τuut + τvvt)ut

]
g+

ηt + ηuut + ηvvt −
[
ξt + ξuut + ξvvt

]
vx −

[
τt + τuut + τvvt

]
vt = 0.

(3.5)

By replacing vx with r(x)ut, and vt with s(x, u)ut + k(x, u) in (3.5), determi-

nant equations are obtained.

In the following, we going to verify physical cases of r(x), s(x, u) and k(x, u),

which admits potential symmetries by calculating the point symmetries of

them. These cases are very important in physics and mathematics. They

are especially useful in investigating space-time metrics on pseudo-Riemannian

spaces [2, 27, 28].

Case 1: s(x, u) = u, r(x) = b and k(x, u) = eλu, here b and λ are change-

less. The infinitesimal group are computed as:
ξ = c1x+ c2,

τ = c3t+ c4v,

ϕ = c5x+ c6,

η = (c1 − c3)v.

(3.6)
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Then, symmetries are obtained by the following generators:

X1 =
∂

∂x
,

X2 = v
∂

∂t
,

X3 = x
∂

∂u
,

X4 =
∂

∂u
,

X5 = t
∂

∂t
− v ∂

∂v
,

X6 = x
∂

∂x
+ v

∂

∂v
.

(3.7)

Undoubtedly, X2 becomes the only potential symmetry of equation (1.1), be-

cause this symmetry satisfies the condition : ξ2v + τ2v + ϕ2
v = 1 > 0.

Case 2: s(x, u) = u, r(x) = x and k(x, u) = u2. Hence, infinitesimal symme-

tries are determined as,


ξ = c1x+ c2v,

τ = c2xu+ c3v,

ϕ =
−c2u
x

v + c1u+ c4,

η = c1v + c5.

(3.8)

Therefore, point symmetries are provided with these vector fields

X1 =
∂

∂v
,

X2 = v
∂

∂t
,

X3 =
∂

∂u
,

X4 = x
∂

∂x
+ v

∂

∂v
+ u

∂

∂u
,

X5 = v
∂

∂x
+ xu

∂

∂t
− uv

x

∂

∂u
.

(3.9)

Certainly, X2 and X5 are potential symmetries for equation (1.1). Because,

respectively, we have

ξ2v + τ2v + ϕ2
v = 1 > 0, ξ2v + τ2v + ϕ2

v = 1 +
u2

x2
> 0,
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Case 3: s(x, u) = u, r(x) = x and k(x, u) = u. The infinitesimal symmetries

are defined as,

ξ = c4x+ c5v,

τ = c5xu+ c6,

ϕ =
−c5uv
x

+
[
(2t+ u)c1 − c2

]
v − 2c1v +

[
− c1u2 + (−2c1t+ c2)u

+2c1v
]
t+ x2c1u−

1

3
c1u

3 +
1

2
c2u

2 + c3u,

η =
c1
2
v2 +

[
(x2 − t2)c1 + c2t+ c3

]
v.

with following generators

X1 = x
∂

∂x
,

X2 =
∂

∂t

X3 = xu
∂

∂t
− uv

x

∂

∂u
+ v

∂

∂x
,

X4 = u
∂

∂u
+ v

∂

∂v
,

X5 =
(
− v + ut+

1

2
u2
) ∂
∂u

+ tv
∂

∂v
,

X6 =
[
(2t+ u)v − 2v + (−u2 − 2tu+ 2v)t+ x2u− 1

3
u3)
] ∂
∂u

+
(1

2
v2 + (x2 − t2)v

) ∂
∂v
.

In this case, X3, X5 and X6 are the potential symmetries for equation (1.1).

Since, we have: 
ξ2v + τ2v + ϕ2

v = 1 +
u2

x2
> 0,

ξ2v + τ2v + ϕ2
v = 1 > 0,

ξ2v + τ2v + ϕ2
v = (4t+ u− 2)2 > 0.

(3.10)

4. potential Symmetry Analysis of the Boussinesq Equation

A set of conservation laws for the Boussinesq equation is obtained with the

following forms [12],

Dt(ut) +Dx(3uux − ux + αu3x) = 0,

Dt(xut) +Dx

(
3xuux + u− 3

2
u2 − xux − αu2x + αxu3x

)
= 0, (4.1)

Dt(tut − u) +Dx(3tuux − tux + αtu3x) = 0,

Dt(−xu+ xtut) +Dx

(
3xtuux + tu− 3

2
tu2 − xtux − 3tαu2x + 3αtxu3x

)
= 0.

In the following, we going to verify the potential symmetries of the Boussinesq

equation, which is rewritten in a form (4.1), by calculating the point symme-

tries of them.
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Case 1: By putting the equation (1.2) in the conservative form, it’s potential

symmetries are calculated

Dt(ut) +Dx(3uux − ux + αu3x) = 0. (4.2)

From the equation (4.2), the infinitesimal symmetries are resulted as,

ξ =
1

5
(c1x+ 5c5)t+ c4x+ c6,

τ =
1

2
c1t

2 + c2t+ c3,

η = −2

5
(c1t+ 5c4)(u− 1

3
),

ϕ = F1(x) +
1

5
(c1x+ 5c5)u+

1

5
(5c2 − 25c4)v.

Then, symmetries are obtained by the following generators:

X1 = ∂t,

X2 = ∂x,

X3 = x∂x − 2u∂u − 5v∂v,

X4 = t∂x + u∂v,

X5 = t∂t + v∂v.

(4.3)

Clearly, nothing of point symmetries are a potential symmetry for (1.2), because

we have

ξ2v + τ2v + η2v = 0.

Case 2: Consider another conservative form as follows,

Dt(xut) +Dx

(
3xuux + u− 3

2
u2 − xux − αu2x + αxu3x

)
= 0. (4.4)

The following infinitesimals are derived from the equation (4.4),

ξ =
1

4
(c1t+ 4c4)x,

τ =
1

2
c1t

2 + c2t+ c3,

η = −1

2
(c1t+ 4c4)(u− 1

3
),

ϕ = F1(x) +
1

12
(12c2 − 48c4)v +

1

12
(3x2u− t2)c1 −

2

3
c4t.

Thus, point symmetries are provided as

X1 = ∂t
X2 = ∂u,

X3 = x∂x − 2u∂u − 4v∂v −
2

3
t∂v,

X4 = t∂t + v∂v.

(4.5)
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Also, none of them are potential symmetries. Since we have

ξ2v + τ2v + η2v = 0.

Case 3: Suppose the conservative form is as follows

Dt(−u+ tut) +Dx(3tuux − tux + αtu3x) = 0. (4.6)

Equation (4.6) admits the following infinitesimals,

ξ = (
1

5

c1
t

+ c4)x+ c5 +
c6
t
,

τ =
c2
t

+ c1 + c3t,

η = − 2

15

(5c4t+ c1)(3u− 1)

t
,

ϕ = F1(x)− 1

5

(c1x+ 5c6)(u)

t
) + (2c3−, 5c4)v,

with following generators,

X1 = ∂x,

X2 = x∂x + 2(1− u)∂u − 5v∂v,

X3 = t∂t + 2v∂v.

Clearly, no potential symmetry is obtained, because ξ2v + τ2v + η2v = 0.

Case 4: We turn to the last conservative form of (4.1)

Dt(−xu+ xtut) +Dx(3xtuux + tu− 3

2
tu2 − xtux − 3tαu2x + 3αtxu3x) = 0.(4.7)

Then, the following infinitesimals are concluded,

ξ =
1

4

xc1
t

+ c4x,

τ =
c2
t

+ c1 + c3t,

η = −1

6

(4c4t+ c1)(3u− 1)

t
),

ϕ = F1(x)− 1

4

x2c1u

t
− 1

3
t2c4 −

1

6
c1t+ (2c3 − 2c4)v.

As a result, point symmetry is obtained

X1 = 3x∂x − 6(3u− 1)∂u − (6v + t2)∂v,

X2 = t∂t + 2v∂v.

Since all point symmetries satisfy condition ξ2v + τ2v + η2v = 0, no potential

symmetry is achieved. It should be noted that the obtained conservation laws,

besides being new, are non-equivalent and non-trivial. The reason for this is

that the effect of the Euler operator on them is non-zero and also the effect of

the Euler operator on the difference of their two primitives is also non-zero.
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5. Conclusions

The present study is devoted to investigating the potential symmetry of

generalized quasilinear hyperbolic and Boussinesq equations. The infinitesimals

and potential symmetries for real scientific items r(x), s(x, u) and k(x, u) of

generalized quasilinear hyperbolic equation are achieved. Then, by calculating

the point symmetries of conservative forms of the Boussinesq equation, we

conclude that the equation under study has no potential symmetry.
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