The size of quasicontinuous maps on Khalimsky line

\author{
Fatemah Ayatollah Zadeh Shirazi* and Nima Shirinbayan
 Faculty of Mathematics, Statistics and Computer Science
 College of Science, University of Tehran, Enghelab Ave., Tehran, Iran
 ```
E-mail: f.a.z.shirazi@ut.ac.ir
 E-mail: shirinbayan@ut.ac.ir

```
}

\begin{abstract}
In the following text we show if \(D\) is Khalimsky line (resp. Khalimsky plane, Khalimsky circle, Khalimsky sphere), then for topological space \(X\) we show the collection of all quasicontinuous maps from \(D\) to \(X\) has cardinality \(\operatorname{card}(X)^{\aleph_{0}}\).
\end{abstract}

Keywords: Alexandroff space, Khalimsky circle, Khalimsky sphere.

\section*{1. Introduction}

Quasicontinuity is one of the weaker forms of continuity. In topological spaces \(Y, Z\) :
- \(Z^{Y}\) denotes the collection of all maps from \(Y\) to \(Z\),
- \(Q(Y, Z)\) denotes the collection of all quasicontinuous maps from \(Y\) to \(Z\),
- \(C(Y, Z)\) denotes the collection of all continuous maps from \(Y\) to \(Z\).
where we say \(f: Y \rightarrow Z\) is quasicontinuous at \(y \in Y\), if for each open neighborhood \(G\) of \(y\) and open neighborhood \(H\) of \(f(y)\), there exists nonempty open subset \(W\) of \(G\) such that \(f(W) \subseteq H\). Also we say \(f: Y \rightarrow Z\) is quasicontinuous if \(f\) is quasicontinuous at each point of \(Y\) [2]. It is clear that \(C(Y, Z) \subseteq Q(Y, Z) \subseteq Z^{Y}\).

By Khalimsky line we mean \(\mathbb{Z}=\{0, \pm 1, \pm 2, \ldots\}\) equipped with topological base \(\{\{2 n+1\}: n \in \mathbb{Z}\} \cup\{\{2 n-1,2 n, 2 n+1\}: n \in \mathbb{Z}\}\) [1]. Let's denote

\footnotetext{
* Corresponding Author

AMS 2020 Mathematics Subject Classification: 54C35, 54D05
}

Khalimsky line by \(\mathcal{K}\) and:
\[
V(n):=\left\{\begin{array}{lc}
\{2 k+1\} & n=2 k+1 \in 2 \mathbb{Z}+1 \\
\{2 k-1,2 k, 2 k+1\} & n=2 k \in 2 \mathbb{Z}
\end{array}\right.
\]
then \(V(n)\) is the smallest open neighborhood of each \(n \in \mathcal{K}\). We call \(\mathcal{K}^{2}\), Khalimsky plane.

Let's mention \(\aleph_{0}=\operatorname{card}(\mathbb{N})\) denotes the least infinite cardinal number.
In this text we compute the cardinality of \(Q(\mathcal{K}, X)\).

\section*{2. Quasicontinuous maps on Khalimsky line and Khalimsky plane}

In this section we show \(\operatorname{card}\left(Q\left(\mathcal{K}^{n}, X\right)\right)=\operatorname{card}(X)^{\aleph_{0}}\) for each topological space \(X\).

Theorem 2.1. For topological space \(X, k \in \mathbb{Z}\), and \(f: \mathcal{K} \rightarrow X\) :
1. \(f\) is quasicontinuous at \(2 k-1\),
2. if there exists \(i\) such that \(f(2 k)=f\left(2 k+(-1)^{i}\right)\), then \(f\) is quasicontinuous in \(2 k\),
3. in metric space \((X, d)\) if \(f\) is quasicontinuous at \(2 k\), then there exists \(i\) such that \(f(2 k)=f\left(2 k+(-1)^{i}\right)\).

Proof. (1) \(2 k-1\) is an isolated point of \(\mathcal{K}\), so any map on \(\mathcal{K}\) is continuous (quasicontinuous) at \(2 k-1\).
(2) Suppose there exists \(i\) such that \(f(2 k)=f\left(2 k+(-1)^{i}\right)\), \(G\) is an open neighborhood of \(2 k\) and \(H\) is an open neighborhood of \(f(2 k)\), then
\[
W:=\left\{2 k+(-1)^{i}\right\} \subseteq V(2 k) \subseteq G
\]
and \(W\) is a nonempty open subset of \(G\), moreover
\[
f(W)=\left\{f\left(2 k+(-1)^{i}\right)\right\}=\{f(2 k)\} \subseteq H
\]

Thus \(f\) is quasicontinuous at \(2 k\).
(3) For metric space \((X, d)\) suppose \(f\) is quasicontinuous at \(2 k\). For each \(n \geq 1\) there exists nonempty open subset \(W_{n}\) of \(V(2 k)\) such that \(f\left(W_{n}\right) \subseteq\{x \in\) \(\left.X: d(x, f(2 k))<\frac{1}{n}\right\}\). All nonempty open subsets of \(V(2 k)\) are \(V(2 k)=\) \(\{2 k-1,2 k, 2 k+1\},\{2 k-1\},\{2 k+1\}\). Hence, \(2 k-1 \in W_{n}\) or \(2 k+1 \in W_{n}\). Therefore there exists \(j_{n} \in\{-1,1\}\) with \(2 k+j_{n} \in W_{n}\) and
\[
d\left(f(2 k), f\left(2 k+j_{n}\right)\right)<\frac{1}{n} .
\]

The sequence \(\left\{2 k+j_{n}\right\}_{n \geq 1}\) has at least one of the constant subsequences \(\{2 k+\) \(1\}_{m \geq 1}\) or \(\{2 k-1\}_{m \geq 1}\). Suppose \(\left\{2 k+(-1)^{i}\right\}_{n \geq 1}\) is the constant subsequence of \(\left\{2 k+j_{n}\right\}_{n \geq 1}\). So
\[
f(2 k)=\lim _{n \rightarrow \infty} f\left(2 k+j_{n}\right)=\lim _{m \rightarrow \infty} f\left(2 k+(-1)^{i}\right)=f\left(2 k+(-1)^{i}\right)
\]
which completes the proof.

Theorem 2.2. In topological space \(X\) we have:
\[
\operatorname{card}(Q(\mathcal{K}, X))=\operatorname{card}(X)^{\aleph_{0}}
\]

In particular for infinite countable \(X\),
\(\operatorname{card}(Q(\mathcal{K}, \mathcal{K}))=\operatorname{card}(Q(\mathcal{K}, X))=\aleph_{0}^{\aleph_{0}}=2^{\aleph_{0}}, \quad \operatorname{card}(Q(\mathcal{K}, \mathbb{R}))=\left(2^{\aleph_{0}}\right)^{\aleph_{0}}=2^{\aleph_{0}}\).
Proof. Suppose \(\mathfrak{S}=\left\{x_{n}\right\}_{n \in \mathbb{Z}}\) is a bisequence in \(X\), by Theorem 2.1, \(f_{\mathfrak{S}}: \mathcal{K} \rightarrow\) \(X\) with \(f_{\mathfrak{S}}(2 k-1)=f_{\mathfrak{S}}(2 k)=x_{k}(k \in \mathbb{Z})\) is quasicontinuous. Therefore
\[
\begin{aligned}
\operatorname{card}(Q(\mathcal{K}, X)) & \geq \operatorname{card}\{\mathfrak{S}: \mathfrak{S} \text { is a bisequence in } X\} \\
& =\operatorname{card}\left(X^{\mathbb{Z}}\right)=\operatorname{card}(X)^{\operatorname{card}(\mathbb{Z})}=\operatorname{card}(X)^{\aleph_{0}}
\end{aligned}
\]

On the other hand
\[
\operatorname{card}(X)^{\aleph_{0}}=\operatorname{card}\left(X^{\mathcal{K}}\right){ }^{\left(X^{\mathcal{K}} \supseteq Q(\mathcal{K}, X)\right)} \geq \operatorname{card}^{2}(Q(\mathcal{K}, X))
\]
which completes the proof by Schröder-Bernstein theorem.

Corollary 2.3. If \(X\) is a totally disconnected space (e.g., Cantor set or discrete space), then \(C(\mathcal{K}, X)\) is just the collection of constant maps, therefore \(\operatorname{card}(X)=\operatorname{card}(C(\mathcal{K}, X))\). In particular for \(D \in\{\mathbb{Z}, \mathbb{N}, \mathbb{Q}\}\) we have:
\[
\operatorname{card}(C(\mathcal{K}, D))=\operatorname{card}(D)=\aleph_{0}<2^{\aleph_{0}}=\operatorname{card}(Q(\mathcal{K}, D))
\]

Theorem 2.4. For \(j \in \mathbb{Z}\) let:
\[
j^{*}:=\left\{\begin{array}{lc}
j & j \in 2 \mathbb{Z}+1 \\
j-1 & j \in 2 \mathbb{Z}
\end{array}\right.
\]
then for each \(\left(a_{1}, \cdots, a_{n}\right) \in \mathcal{K}^{n}\) (equipped with product topology), topological space \(X\), and \(f: \mathcal{K}^{n} \rightarrow X\) we have:
1. \(V\left(a_{1}\right) \times \cdots \times V\left(a_{n}\right)\) is the smallest open neighborhood of \(\left(a_{1}, \cdots, a_{n}\right)\),
2. \(\left\{\left(a_{1}^{*}, \cdots, a_{n}^{*}\right)\right\}\) is an open subset of \(V\left(a_{1}\right) \times \cdots \times V\left(a_{n}\right)\),
3. if \(f\left(a_{1}, \cdots, a_{n}\right)=f\left(a_{1}^{*}, \cdots, a_{n}^{*}\right)\), then \(f\) is quasicontinuous at \(\left(a_{1}, \cdots, a_{n}\right)\),
4. \(\operatorname{card}\left(Q\left(\mathcal{K}^{n}, X\right)\right)=\operatorname{card}(X)^{\aleph_{0}}\left(=\operatorname{card}\left(X^{\mathcal{K}^{n}}\right)\right)\).

Proof. (1, 2) Use properties of product topology.
(3) Use a similar method described in Theorem 2.1.
(4) \((2 \mathbb{Z}+1)^{n}\) is infinite countable, so we may suppose \((2 \mathbb{Z}+1)^{n}=\left\{u_{1}, u_{2}, \ldots\right\}\) with distinct \(u_{i}\) s. Suppose that \(\mathfrak{S}=\left\{x_{i}\right\}_{i \in \mathbb{N}}\) is an arbitrary sequence in \(X\), by item \((3), f_{\mathfrak{S}}: \mathcal{K}^{n} \rightarrow X\) with \(f_{\mathfrak{S}}\left(a_{1}, \cdots, a_{n}\right)=x_{k}\) (where \(k \in \mathbb{N}\) and \(\left.\left(a_{1}^{*}, \cdots, a_{n}^{*}\right)=u_{k}\right)\) is quasicontinuous. Using a similar method described in Theorem 2.2 we have \(\operatorname{card}\left(Q\left(\mathcal{K}^{n}, X\right)\right)=\operatorname{card}(X)^{\aleph_{0}}\).
3. Quasicontinuous maps on Khalimsky circle and Khalimsky sphere

In topological space \(W\) suppose \(\infty \notin W\) and let \(A(W):=W \cup\{\infty\}\). Consider \(A(W)\) with topology \(\{U \subseteq W: U\) is an open subset of \(W\} \cup\{U \subseteq A(W): W \backslash U\) is a closed compact subset of \(W\}\), we call \(A(W)\) one point compactification or Alexandroff compactification of \(W\) [3]. One point compactification of Khalimsky line is called Khalimsky circle and one point compactification of Khalimsky plane is called Khalimsky sphere. In this section we show \(\operatorname{card}\left(Q\left(A\left(\mathcal{K}^{n}\right), X\right)\right)=\) \(\operatorname{card}(X)^{\aleph_{0}}\) for each topological space \(X\) and \(n \geq 1\).

Remark 3.1. For \(n \geq 1\), compact subsets of \(\mathcal{K}^{n}\) are finite. Suppose \(E\) is a compact subset of \(\mathcal{K}^{n}\), thus \(\left\{V\left(a_{1}\right) \times \cdots \times V\left(a_{n}\right):\left(a_{1}, \cdots, a_{n}\right) \in E\right\}\) is an open cover of \(E\), hence there exists finite subset \(G\) of \(E\) such that \(E \subseteq\) \(\bigcup\left\{V\left(a_{1}\right) \times \cdots \times V\left(a_{n}\right):\left(a_{1}, \cdots, a_{n}\right) \in G\right\}\), since \(V\left(a_{1}\right) \times \cdots \times V\left(a_{n}\right) s\) and \(G\) are finite, \(E\) is finite too.

Theorem 3.2. \(\operatorname{card}\left(Q\left(A\left(\mathcal{K}^{n}\right), X\right)\right)=\operatorname{card}(X)^{\aleph_{0}}\) for topological space \(X\) and \(n \geq 1\).

Proof. Using the same notations as in Theorem \(2.4(2 \mathbb{N}-1) \times(2 \mathbb{Z}+1)^{n-1}\) is infinite countable, so we may suppose \((2 \mathbb{N}-1) \times(2 \mathbb{Z}+1)^{n-1}=\left\{u_{1}, u_{2}, \ldots\right\}\) with distinct \(u_{i}\) s. For each sequence \(\mathfrak{S}=\left\{x_{i}\right\}_{i \in \mathbb{N}}\) in \(X\), define \(g_{\mathfrak{S}}: \mathcal{K}^{n} \rightarrow X\) with:
\[
g_{\mathfrak{S}}(a):= \begin{cases}x_{k} & a=\left(a_{1}, \cdots, a_{n}\right) \in \mathcal{K}^{n},\left(a_{1}^{*}, \cdots, a_{n}^{*}\right)=u_{k}, a_{1}^{*}>0 \\ x_{1} & a=\left(a_{1}, \cdots, a_{n}\right) \in \mathcal{K}^{n}, a_{1}^{*}<0 \\ x_{1} & a=\infty\end{cases}
\]
then for \(a \in A\left(\mathcal{K}^{n}\right)\) we have the following cases:
- \(a=\left(a_{1}, \cdots, a_{n}\right) \in \mathcal{K}^{n}\) : in this case for each open neighborhood \(U\) of \(a\) and open neighborhood \(V\) of \(g_{\mathfrak{S}}(a), V\left(a_{1}\right) \times \cdots \times V\left(a_{n}\right)\) is the smallest open neighborhood of \(a\) and \(W:=\left\{\left(a_{1}^{*}, \cdots, a_{n}^{*}\right)\right\}\left(\subseteq V\left(a_{1}\right) \times\right.\) \(\left.\cdots \times V\left(a_{n}\right) \subseteq U\right)\) is a nonempty open subset of \(U\) also:
\[
g_{\mathfrak{S}}(W)=\left\{g_{\mathfrak{S}}\left(a_{1}^{*}, \cdots, a_{n}^{*}\right)\right\}=\left\{g_{\mathfrak{S}}\left(a_{1}, \cdots, a_{n}\right)\right\} \subseteq V,
\]
therefore in this case \(g_{\mathfrak{S}}\) is quasicontinuous at \(a\),
- \(a=\infty\) : in this case for each open neighborhood \(U\) of \(a\) and open neighborhood \(V\) of \(g_{\mathfrak{S}}(a)=x_{1}\), by Remark 3.1 there exists finite subset \(H\) of \(\mathcal{K}^{n}\) such that \(U=A\left(\mathcal{K}^{n}\right) \backslash H\), therefore there exists \(p \geq 1\) such that \((-2 p+1, \cdots,-2 p+1) \in U\) in particular \(W:=\{(-2 p+1, \cdots,-2 p+1)\}\) is a nonempty open subset of \(U\) and
\[
g_{\mathfrak{S}}(W)=\left\{g_{\mathfrak{S}}(-2 p+1, \cdots,-2 p+1)\right\}=\left\{x_{1}\right\}=\left\{g_{\mathfrak{S}}(\infty)\right\} \subseteq V
\]

Thus \(g_{\mathfrak{S}}\) is quasicontinuous at \(a=\infty\) in this case.

Using the above cases \(g_{\mathfrak{S}}: \mathcal{K}^{n} \rightarrow X\) is quasicontinuous.
Thus:
\[
\begin{aligned}
\operatorname{card}\left(Q\left(A\left(\mathcal{K}^{n}\right), X\right)\right) & \geq \operatorname{card}\left\{g_{\mathfrak{S}}: \mathfrak{S} \text { is a sequence in } X\right\} \\
& =\operatorname{card}\{\mathfrak{S}: \mathfrak{S} \text { is a sequence in } X\} \\
& =\operatorname{card}\left(X^{\mathbb{N}}\right)=\operatorname{card}(X)^{\aleph_{0}}
\end{aligned}
\]

Using a similar method described in Theorem 2.2 completes the proof.

\section*{4. Conclusion}

For Khalimsky line \(\mathcal{K}\), Khalimsky plane \(\mathcal{K}^{2}\), Khalimsky circle \(A(\mathcal{K})\), Khalimsky sphere \(A\left(\mathcal{K}^{2}\right)\) and topological space \(X\) we show the collection of all quasicontinuous maps from \(\mathcal{K}\left(\operatorname{resp} \mathcal{K}^{2}, A(\mathcal{K}), A\left(\mathcal{K}^{2}\right)\right)\) to \(X\) has \(\operatorname{card}(X)^{\aleph_{0}}\) elements. In particular for countable \(X\) with at least two elements, \(Q(\mathcal{K}, X)\) (the collection of all quasicontinuous maps from \(\mathcal{K}\) to \(X\) ) is uncountable.

Acknowledgment: The authors wish to dedicate this paper to our lady, Fatimah-Zahra (as).

\section*{References}
1. S.-E. Han, An extension problem of a connectedness preserving map between Khalimsky spaces, Filomat, 30/1(2016), 15-28.
2. L. Holá and D. Holý, Metrizability of the space of quasicontinuous functions, Topology and its Applications, 246(2018), 137-143.
3. L. A. Steen and J. A. Seebach, Counterexamples in topology, Holt, Rinehart and Winston, Inc., New York, 1970.

Received: 04.09.2023
Accepted: 10.11.2023```

