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Abstract. This paper mainly studies the volume comparison in Finsler geom-

etry under the condition that the weighted Ricci curvature Ric∞ has a lower

bound. By using the Laplacian comparison theorems of distance function, we

characterize the growth ratio of the volume coefficients. Further, some volume

comparison theorems of Bishop-Gromov type are obtained.
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1. Introduction

Finsler geometry is a natural generalization and extension of Riemannian

geometry. Similar to Riemannian case, Finsler manifolds with Ricci curvature

bounded below are always of some amazing properties. At the same time,

volume comparison on Finsler manifolds play an important role in the studies

of geometry and topology of Finsler manifolds. For example, Z. Shen proved

the Gromov-Bishop volume comparison theorem in Finsler geometry under the

condition that Ric ≥ (n − 1)λ. As an application, he obtained some precom-

pactness and finiteness theorems for Finsler manifolds( [6]). B. Wu and Y.

Xin obtained a similar volume comparison theorem under the conditions that

∗Corresponding Author

AMS 2020 Mathematics Subject Classification: 53B40, 53C60
1



2 Xinyue Cheng, Hong Cheng and Xibin Zhang

Ric ≤ c < 0 and ∥S∥x = supX∈TxM\0
S(X)
F (X) ≤ Λ ( [10]). Later, Ohta proved a

new version of the Gromov-Bishop volume comparison theorem on Finsler man-

ifolds with weighted Ricci curvature bounded below, RicN ≥ K for someK ∈ R

and N ∈ [n,∞)( [5]). Further, the first author and Z. Shen establish a rela-

tive volume comparison of Bishop-Gromov type on Finsler manifolds. As the

applications, they obtain an upper bound for volumes of the Finsler manifolds

and a theorem of Bonnet-Myers type on Finsler manifolds with weighted Ricci

curvature bounded below, Ric∞ ≥ K > 0 when S-curvature is bounded( [2]).

On the other hand, Q. Xia obtains a volume comparison theorem under the

assumption that RicN ≥ K for N ∈ [n,∞) and K ∈ R. Based on this, Q.

Xia proves the existence of two types of optimal (p, q)-Sobolev inequalities on

compact Finsler manifolds ( [11]).

In this paper, our main aim is to derive some new volume comparison on

Finsler manifolds with weighted Ricci curvature bounded below, Ric∞ ≥ K >

0. In order to introduce our main theorems clearly, we first give some necessary

notations. Let (M,F,m) be an n-dimensional Finsler manifold with a smooth

measure m and x ∈M . Let Ωx :=M\({x}∪Cut(x)) be the cut-domain onM ,

where Cut(x) is the cut locus of x, which has zero Hausdorff measure. Then,

for any z ∈ Ωx, we can choose the geodesic polar coordinates (r, ξ) centered at x

such that r(z) = F (v) and ξα(z) = ξα( v
F (v) ), where v = exp−1

x (z) ∈ TxM\{0}.
By Gauss’s lemma, the unit radial coordinate vector ∂

∂r and the coordinate

vectors ∂
∂ξα for 1 ≤ α ≤ n − 1 are mutually vertical with respect to g∇r ( [1],

Lemma 6.1.1). Therefore, we can write the volume form as dm|expx(rξ)
=

σ(x, r, ξ)drdξ , where ξ ∈ Ix = {ξ ∈ TxM | F (ξ) = 1} and z = expx(rξ).

Besides, in the following, B(x,R) denotes the geodesic ball of radius R at the

center x ∈ M . We also denote the geodesic sphere of radius r at the center

x ∈M by S(x, r).

Our first main theorem is as follows.

Theorem 1.1. Let (M,F,m) be an n-dimensional Finsler manifold with a

smooth volume form dm. Assume that Ric∞ ≥ K > 0 and |S| ≤ δ. Then,

along any minimizing geodesic starting from the center x of B(x,R) and for

any 0 < r1 < r2 < min
{
R, π2

√
n−1
K

}
, we have

σ(x, r2, ξ)

σ(x, r1, ξ)
≤
(
r2
r1

)n−1

e(r2−r1)δ. (1.1)

Further, for any 0 < r1 < r2 < min
{
R, π2

√
n−1
K

}
, we have

m(B(x, r2))

m(B(x, r1))
≤
(
r2
r1

)n
er2δ. (1.2)
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In Theorem 1.1, if (M,F,m) is a forward complete Finsler manifold, by

Theorem 3.2 (that is, Theorem 4.1 in [2]), we know that

R ≤ π√
K

( δ√
K

+

√
δ2

K
+ n− 1

)
.

Further, we can get the following theorem.

Theorem 1.2. Let (M,F,m) be an n-dimensional Finsler manifold with a

smooth volume form dm. Assume that Ric∞ ≥ K > 0 and |τ | ≤ k. Then,

along any minimizing geodesic starting from the center x of B(x,R) and for

any 0 < r1 < r2 < min
{
R, π4

√
n−1
K

}
, we have

σ(x, r2, ξ)

σ(x, r1, ξ)
≤
(
r2
r1

)n+4k−1

. (1.3)

Further, for any 0 < r1 < r2 < min
{
R, π4

√
n−1
K

}
, we have

m(B(x, r2))

m(B(x, r1))
≤
(
r2
r1

)n+4k

. (1.4)

Here, τ denotes the distortion of F .

More generally, we have the following theorem.

Theorem 1.3. Let (M,F,m) be an n-dimensional Finsler manifold with a

smooth volume form dm. Assume that Ric∞ ≥ K > 0. Then, along any

minimizing geodesic starting from the center x of B(x,R) and for any 0 <

r0 < r1 < r2 < R, we have

σ(x, r2, ξ)

σ(x, r1, ξ)
≤ e

1
2K(r22−r

2
1)e(r2−r1)(m0+Kr0). (1.5)

Further, for any 0 < r0 < r1 < r2 < R, we have

m(B(x, r2))

m(B(x, r1))
≤
erf(

√
K
2 r2)− erf(

√
K
2 r0)

erf(
√

K
2 r1)− erf(

√
K
2 r0)

e(r2−r0)(m0+Kr0), (1.6)

where m0 := supz∈r−1(r0) ∆r(z) characterizes the mean curvature of the geo-

desic sphere S(x, r0) and erf(x) denotes the Gaussian error function, erf(x) =
2√
π

∫ x
0
e−η

2

dη.

For some detailed discussions about Gaussian error function erf(x), please

see [4].

The paper is organized as follows. In Section 2, we will give some necessary

definitions and notations. In Section 3, we will give some necessary and im-

portant lemmas and a theorem. Then we will give the proofs of Theorem 1.1,

Theorem 1.2 and Theorem 1.3 in Section 4.
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2. Preliminaries

In this section, we briefly review some basis definitions and notations in

Finsler geometry. For more details, we refer to [1, 3].

LetM be an n-dimensional smooth manifold. For a point x ∈M , denote by

TxM the tangent space of M at x. The tangent bundle TM of M is the union

of tangent spaces with a natural differential structure,

TM =
∪
x∈M

TxM. (2.1)

Denote the elements in TM by (x, y) with y ∈ TxM . Let TM0 := TM\{0} and

π : TM\{0} → M be the natural projective map. The pull-back π∗TM is an

n-dimensional vector bundle on TM0. A Finsler metric on manifold M means

a function F : TM −→ [0,∞) on the tangent bundle satisfying the following

properties:

(1) F is C∞ on TM\{0};
(2) F (x, λy) = λF (x, y) for any (x, y) ∈ TM and all λ > 0;

(3) F is strongly convex, that is, the matrix (gij(x, y)) =
(
1
2 (F

2)yiyj
)
is

positive definite for any nonzero y ∈ TxM .

Such a pair (M,F ) is called a Finsler manifold and g := gij(x, y)dx
i ⊗ dxj is

called the fundamental tensor of F .

Let (M,F,m) be an n-dimensional Finsler manifold equipped with a measure

m on M. Write the volume form dm of m as dm = σ(x)dx1dx2 · · · dxn. Define

τ(x, y) := ln

√
det (gij(x, y))

σ(x)
. (2.2)

We call τ the distortion of F . It is natural to study the rate of change of the

distortion along geodesics. For a vector y ∈ TxM\{0}, let σ = σ(t) be the

geodesic with σ(0) = x and σ̇(0) = y. Set

S(x, y) :=
d

dt
[τ(σ(t), σ̇(t))] |t=0. (2.3)

S is called the S-curvature of F ( [3, 6]).

Let Y be a C∞ geodesic field on an open subset U ⊂M and ĝ = gY . Let

dm := e−ψVolĝ, Volĝ =
√
det (gij (x, Yx))dx

1 · · · dxn.

It is easy to see that ψ is given by

ψ(x) = ln

√
det (gij (x, Yx))

σ(x)
= τ (x, Yx) ,

which is just the distortion along Yx at x ∈ M ( [3]). Let y := Yx ∈ TxM

(that is, Y is a geodesic extension of y ∈ TxM). Then, by the definitions of
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the S-curvature and the Hessian ( [6, 7]), we have

S(x, y) = y[τ(x, Yx)] = dψ(y),

Ṡ(x, y) = y[S(x, Y )] = y[Y (ψ)] = Hessψ(y),

where Ṡ(x, y) := S|m(x, y)ym and “|” denotes the horizontal covariant de-

rivative with respect to the Chern connection. Further, the weighted Ricci

curvatures are defined as follows.

RicN (y) = Ric(y) + Hessψ(y)− dψ(y)2

N − n
, (2.4)

Ric∞(y) = Ric(y) + Hessψ(y). (2.5)

We define a map L : TM → T ∗M by

L(y) :=
{
gy(y, ·), y ̸= 0,

0, y = 0.

It is easy to see that

F (x, y) = F ∗(x,L(y)). (2.6)

Thus L is a norm-preserving transformation ( [2, 7]). We call L the Legendre

transformation on Finsler manifold (M,F ). Given a smooth function u on M ,

the differential dux at any point x ∈M ,

dux =
∂u

∂xi
(x)dxi

is a linear function on TxM . We define the gradient vector ∇u(x) of u at x ∈M

by ∇u(x) := L−1 (du(x)) ∈ TxM . In a local coordinate system, we can express

∇u as

∇u(x) =
{
g∗ij(x, du) ∂u∂xi

∂
∂xj , x ∈Mu,

0, x ∈M \Mu,
(2.7)

where Mu = {x ∈M | du(x) ̸= 0} ( [2, 7]).

Associated with the measure m on M , we may decompose the volume form

dm of m as dm = eΦdx1dx2 · · · dxn. Then the divergence of a differentiable

vector field V on M is defined by

divmV :=
∂V i

∂xi
+ V i

∂Φ

∂xi
, V = V i

∂

∂xi
. (2.8)

One can also define divmV in the weak form by following divergence formula:∫
M

ϕ divmV dm = −
∫
M

dϕ(V ) dm (2.9)

for all ϕ ∈ C∞
c (M).

Now we define the Finsler Laplacian ∆u of u ∈ H1
loc(M) by

∆u := divm(∇u). (2.10)



6 Xinyue Cheng, Hong Cheng and Xibin Zhang

Equivalently, we can define Laplacian ∆u on the whole M in the weak sense

by ∫
M

ϕ ∆u dm := −
∫
M

dϕ(∇u)dm (2.11)

for all ϕ ∈ C∞
c (M). From (2.10), Finsler Laplacian is a nonlinear elliptic

differential operator of the second order. Moreover, since the gradient vector

field ∇u is merely continuous onM\Mu, even when u ∈ C∞(M), it is necessary

to introduce the Laplacian in the weak form as (2.11).

Next, we define

sc(t) :=


1√
c
sin(

√
ct)

t
1√
−c sin(

√
−ct)

c > 0,

c = 0,

c < 0.

Obviously, sc(t) is the solution of the differential equation f ′′+cf = 0 satisfying

f(0) = 0 and f ′(0) = 1. Further, we define

ctc(t) :=
s′c(t)

sc(t)
=


√
c cot(

√
ct)

1
t√
−c coth(

√
−ct)

c > 0,

c = 0,

c < 0.

Let A be a closed subset in a Finsler manifold (M,F ). Let

r(x) := d(A, x).

r(x) is locally Lipschitz function. Thus they are differentiable almost every-

where. We have the following

Lemma 2.1. ( [7, 8]) Let r(x) := d(A, x) for a closed subset A ⊆ M . Then,

on an open subset U ⊂M , we have

F ∗ (x, dr) = F (x,∇r) = 1, x ∈ U

In general, a Lipschitz function f on a Finsler manifold (M,F ) is called a

distance function if the following identity holds almost everywhere onM ( [7,8])

F (x,∇fx) = 1.

Particularly, for any point p ∈M , we have the distance function r(x) = d(p, x).

Let (M,F,m) be an n-dimensional Finsler manifold with a smooth measure

m and x ∈M . Let Ωx :=M\({x}∪Cut(x)) be the cut-domain on M . For any

z ∈ Ωx, we can choose the geodesic polar coordinates (r, ξ) centered at x for z

such that r(z) = F (v) and ξα(z) = ξα( v
F (v) ), where v = exp−1

x (z) ∈ TxM\{0}.
Actually, z = expx(rξ). A basic fact is that the distance function r = d(x, z)

satisfies the following ( [7, 8])

∇r|z =
∂

∂r
|z. (2.12)
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Further, we can write the volume form as dm|expx(rξ)
= σ(x, r, ξ)drdξ , where

ξ ∈ Ix = {ξ ∈ TxM | F (ξ) = 1}. Then, for geodesic ball B(x,R) of radius R

at the center x ∈M , the volume of B(x,R) is

m(B(x,R)) =

∫
B(x,R)

dm =

∫
B(x,R)∩Ωx

dm =

∫ R

0

dr

∫
Dx(r)

σ(x, r, ξ)dξ,

(2.13)

where Dx(r) = {ξ ∈ Ix | rξ ∈ exp−1
x (Ωx ∩ B(x,R))}. Obviously, for any

0 < s < t < R, Dx(t) ⊆ Dx(s).

3. Some important theorems and lemmas

In order to prove the main results in this paper, we first introduce some

necessary lemmas and a theorem that we will need later. Firstly, we need the

following lemma for the proofs of Theorem 1.1 and Theorem 1.2.

Lemma 3.1. (Laplacian comparison, [2,12]) Let (M,F,m) be an n-dimensional

Finsler manifold with weighted Ricci curvature satisfying Ric∞ ≥ (n−1)c. Then

the following bound on ∆r holds.

(a) If S ≥ −δ, then the following holds on Ωp ∩B(p, ro),

∆r ≤ d

dt

[
lnχ(t)

]
|t=r(x),

where χ(t) = [sc(t)]
n−1eδt, 0 < t < ro. Here ro = +∞ when c ≤ 0 and

ro =
π

2
√
c
when c > 0.

(b) If the distortion τ satisfies that |τ | ≤ k, then the following holds on

Ωp ∩B(p, ro),

∆r ≤ d

dt

[
lnχ(t)

]
|t=r(x),

where χ(t) := [sc(t)]
n+4k−1, 0 < t < ro. Here ro := +∞ when c ≤ 0

and ro = π/(4
√
c) when c > 0.

The following theorem is valuable for determining the upper bound of radius

of the balls in Theorem 1.1.

Theorem 3.2. ( [2]) Let (M,F,m) be an n-dimensional forward complete

Finsler manifold with smooth volume form dm = ϕ(x)dmBH . Assume

Ric∞ ≥ K > 0, |S| ≤ δ.

Then the diameter of the manifold M is bounded.

Diam(M) ≤ π√
K

(
δ√
K

+

√
δ2

K
+ n− 1).

The following lemma is necessary for the proof of Theorem 1.3.
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Lemma 3.3. ( [2, 9, 12]) Let (M,F,m) be an n-dimensional Finsler manifold

with weighted Ricci curvature satisfying Ric∞ ≥ K. Then, for any p ∈M , the

following holds whenever the distance function r(x) := dF (p, x) is smooth and

r(x) > r0

∆r ≤ d

dt
[lnχ(t)]

∣∣∣∣
t=r(x)

,

where χ(t) = em0(t−r0)− 1
2K(t−r0)2 ( r0 < t <∞) and m0 := supx∈r−1(r0) ∆r(x)

characterizes the mean curvature of the geodesic sphere S(p, r0) ( [7, 8]).

4. Proof of the Main Theorems

In this section, we will give the proofs of our main results.

Proof of Theorem 1.1. Firstly, let η : [0, r] → M be the minimizing geodesic

from η(0) = x to η(r) = z, where r = d(x, z). By using the geodesic polar

coordinates (r, ξ) centered at x and by (2.12), the Laplacian of the distance

function r satisfies ( [7, 8])

∆r =
∂

∂r
log σ(x, r, ξ). (4.1)

By the assumption, Ric∞ ≥ K > 0, that is, Ric∞ ≥ (n − 1)c > 0, where

c = K
n−1 > 0. According to Lemma 3.1(a), we have

∆r ≤ d

dt
[lnχ0(t)]|t=r.

where χ0 = [sc(t)]
n−1eδt, 0 < t < r0 and r0 = π

2
√
c
= π

2

√
n−1
K . Thus we can get

∆r ≤ δ + (n− 1)ctc(r) = δ +
√

(n− 1)K cot

(√
K

n− 1
r

)
,

where 0 < r < π
2

√
n−1
K .

By

cot r =
1

r
− 1

3
r − 1

45
r3 − 2

945
r5 − · · · ≤ 1

r
, 0 < r < π. (4.2)

we have
√
(n− 1)K cot(

√
K
n−1r) ≤

n−1
r . Then we obtain the following

∆r ≤ δ +
n− 1

r
.

Therefore, we can get

∂

∂r
log σ(x, r, ξ) ≤ δ +

n− 1

r
,

Integrating in r on both sides of the above inequality from r1 to r2 , we get

log
σ(x, r2, ξ)

σ(x, r1, ξ)
≤ (n− 1) log

r2
r1

+ (r2 − r1)δ,
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which implies that

σ(x, r2, ξ)

σ(x, r1, ξ)
≤
(
r2
r1

)n−1

e(r2−r1)δ.

This is just (1.1). Further, for any 0 < s < r1 < t < r2 < min
{
R, π2

√
n−1
K

}
,

we have

σ(x, t, ξ)sn−1 ≤ tn−1σ(x, s, ξ)e(t−s)δ ≤ tn−1σ(x, s, ξ)er2δ.

Now, integrating in t from r1 to r2, we get

sn−1

∫ r2

r1

σ(x, t, ξ)dt ≤ 1

n
(rn2 − rn1 )σ(x, s, ξ)e

r2δ.

Then, integrating on both sides of above inequality with respect to s from 0 to

r1 yields

1

n
rn1

∫ r2

r1

σ(x, t, ξ)dt ≤ 1

n
(rn2 − rn1 )

∫ r1

0

σ(x, s, ξ)er2δds.

Further,∫ r2

r1

dt

∫
Dx(t)

σ(x, t, ξ)dξ ≤ rn2 − rn1
rn1

er2δ
∫ r1

0

ds

∫
Dx(t)

σ(x, s, ξ)dξ

≤ rn2 − rn1
rn1

er2δ
∫ r1

0

ds

∫
Dx(s)

σ(x, s, ξ)dξ.

By (2.13), we have

m(B(x, r2))−m(B(x, r1)) ≤
rn2 − rn1
rn1

er2δm(B(x, r1)).

Therefore,

m(B(x, r2))

m(B(x, r1))
≤ 1 +

(
r2
r1

)n
er2δ − er2δ ≤

(
r2
r1

)n
er2δ.

This completes the proof of Theorem 1.1. □

Proof of Theorem 1.2. Similar to the proof of Theorem 1.1, let η : [0, r] →
M be the minimizing geodesic from η(0) = x to η(r) = z. By using the

geodesic polar coordinates (r, ξ) centered at x and by (2.12), the Laplacian of

the distance function r satisfies (4.1).

By the assumption that Ric∞ ≥ K > 0 and by Lemma 3.1(b), we have

∆r ≤ d

dt
[lnχ0(t)]|t=r.

Here χ0 = [sc(t)]
n+4k−1, 0 < t < r0, c = K

n−1 > 0 and r0 = π
4
√
c
= π

4

√
n−1
K .

Thus we have

∆r ≤ (n+ 4k − 1)
√
c cot(

√
cr).
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By (4.2) again, we obtain

∆r ≤ (n+ 4k − 1)
1

r
.

Therefore, we have

∂

∂r
log σ(x, r, ξ) ≤ (n+ 4k − 1)

1

r

Integrating in r on both sides of the above inequality from r1 to r2, we can get

log
σ(x, r2, ξ)

σ(x, r1, ξ)
≤ (n+ 4k − 1) log

r2
r1
,

Then we get

σ(x, r2, ξ)

σ(x, r1, ξ)
≤
(
r2
r1

)n+4k−1

.

Further, for any 0 < s < r1 < t < r2 < min
{
R, π4

√
n−1
K

}
, we have

σ(x, t, ξ)sn+4k−1 ≤ σ(x, s, ξ)tn+4k−1.

Now, by the same process in the proof of the Theorem 1.1, we can obtain the

following

m(B(x, r2))−m(B(x, r1)) ≤ m(B(x, r1))
r2
n+4k − r1

n+4k

r1n+4k
,

which means that
m(B(x, r2))

m(B(x, r1))
≤
(
r2
r1

)n+4k

.

This completes the proof of Theorem 1.2. □

Finally, we give the proof of Theorem 1.3.

Proof of Theorem 1.3. By Ric∞ ≥ K > 0 and Lemma 3.3, we have

∆r ≤ d

dt
[lnχ0(t)]|t=r ,

where χ0(t) = em0(t−r0)− 1
2K(t−r0)2 , r0 < t <∞. Hence, in this case, we have

∆r ≤ [m0 −K(t− r0)]|t=r = m0 +K(r0 − r).

Therefore, by (4.1), we have

∂

∂r
log σ(x, r, ξ) ≤ m0 +K(r0 − r).

Integrating in r on both sides of the above inequality from r1 to r2 yields

log
σ(x, r2, ξ)

σ(x, r1, ξ)
≤ (m0 +Kr0)(r2 − r1) +

1

2
K(r21 − r22),

from which, we obtain the following

σ(x, r2, ξ)

σ(x, r1, ξ)
≤ e

1
2K(r21−r

2
2)e(r2−r1)(m0+Kr0).
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Further, for any 0 < r0 < s < r1 < t < r2 < R, we have

σ(x, t, ξ)e−
1
2Ks

2

≤ σ(x, s, ξ)e−
1
2Kt

2

e(t−s)(m0+Kr0)

≤ σ(x, s, ξ)e−
1
2Kt

2

e(r2−r0)(m0+Kr0).

Next, integrating in t from r1 to r2 on both sides of above inequality, we get

e−
1
2Ks

2

∫ r2

r1

σ(x, t, ξ)dt ≤ σ(x, s, ξ)e(r2−r0)(m0+Kr0)

∫ r2

r1

e−
1
2Kt

2

dt.

Then integrating in s from r0 to r1, we have∫ r1

r0

e−
1
2Ks

2

ds

∫ r2

r1

σ(x, t, ξ)dt ≤ e(r2−r0)(m0+Kr0)

∫ r2

r1

e−
1
2Kt

2

dt

∫ r1

r0

σ(x, s, ξ)ds,

By ∫ r1

0

e−
1
2Ks

2

ds =

√
πerf(

√
K√
2
r1)

√
2K

and ∫ r2

r1

e−
1
2Kt

2

dt =

√
π(erf(

√
K√
2
r2)− erf(

√
K√
2
r1))

√
2K

,

we can get

∫ r2

r1

σ(x, t, ξ)dt ≤
erf(

√
K
2 r2)− erf(

√
K
2 r1)

erf(
√

K
2 r1)− erf(

√
K
2 r0)

e(r2−r0)(m0+Kr0)

∫ r1

r0

σ(x, s, ξ)ds.

Further,∫ r2

r1

dt

∫
Dx(t)

σ(x, t, ξ)dξ

≤

erf(
√

K
2 r2)− erf(

√
K
2 r1)

erf(
√

K
2 r1)− erf(

√
K
2 r0)

 e(r2−r0)(m0+Kr0)

∫ r1

r0

ds

∫
Dx(s)

σ(x, s, ξ)dξ.

By (2.13), we get

m(B(x, r2))−m(B(x, r1))

≤

erf(
√

K
2 r2)− erf(

√
K
2 r1)

erf(
√

K
2 r1)− erf(

√
K
2 r0)

 e(r2−r0)(m0+Kr0) (m(B(x, r1))−m(B(x, r0)))

≤

erf(
√

K
2 r2)− erf(

√
K
2 r1)

erf(
√

K
2 r1)− erf(

√
K
2 r0)

 e(r2−r0)(m0+Kr0)m(B(x, r1)).
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Therefore,

m(B(x, r2))

m(B(x, r1))
≤ 1 +

erf(
√

K
2 r2)− erf(

√
K
2 r1)

erf(
√

K
2 r1)− erf(

√
K
2 r0)

 e(r2−r0)(m0+Kr0)

≤

erf(
√

K
2 r2)− erf(

√
K
2 r0)

erf(
√

K
2 r1)− erf(

√
K
2 r0)

 e(r2−r0)(m0+Kr0).

This completes the proof of Theorem 1.3. □
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