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Abstract. In this paper, we introduce the notion of sympathetic hom-Lie
superalgebras. We prove some results on sympathetic multiplicative hom-Lie
superalgebras with surjective .. In particular, we find some equivalence condi-
tion in which a sympathetic graded hom-ideal is direct factor of multiplicative
hom-Lie superalgebra.
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1. Introduction

Hom-Lie algebras and quasi-hom-Lie algebras were introduced first by Hartwig,
Larsson, and Silvestrov in 2003 in [T7] devoted to a general method for construc-
tion of deformations and discretizations of Lie algebras of vector fields and defor-
mations of Witt and Virasoro type algebras based on general twisted derivations
(o-derivations) obeying twisted Leibniz rule, and motivated also by the exam-
ples of g-deformed Jacobi identities in g-deformations of Witt and Visaroro al-
gebras and in related ¢g-deformed algebras discovered in 1990’th in string theory,
vertex models of conformal field theory, quantum field theory and quantum me-
chanics, and ¢g-deformed differential calculi and g-deformed homological algebra
[@, 20]. In 2005, Larsson and Silvestrov introduced quasi-Lie and quasi-Leibniz
algebras in [IR] and graded color quasi-Lie and graded color quasi-Leibniz al-
gebras in [I9] incorporating within the same framework the hom-Lie algebras

*Corresponding Author

AMS 2020 Mathematics Subject Classification: 17B61, 17D30, 17B65, 17B68.
118



Characterization of a special case of hom-Lie superalgebra II 119

and quasi-hom-Lie algebras, the color hom-Lie algebras and hom-Lie superalge-
bras, quasi-hom-Lie color algebras, quasi-hom-Lie superalgebras, quasi-Leibniz
algebras and graded color quasi-Leibniz algebras. Investigation of color hom-
Lie algebras and hom-Lie superalgebras and n-ary generalizations have been
further expanded recently in [2, @, B, B, B, [@, 8, 9, 00, [, [, [3, 6, 22, U6, 27].

In [, 05], the complete Lie superalgebras were introduced and studied.
Recently the notion of compact hom-Lie superalgebra was introduced in [g].
In this article, we introduce the notion of sympathetic hom-Lie superalgebras.
We prove some results on sympathetic multiplicative hom-Lie superalgebras
with surjective . In particular, we find some equivalence condition in which a
sympathetic graded hom-ideal is direct factor of multiplicative hom-Lie super-
algebra.

2. Preliminaries on hom-Lie superalgebras and their representation
and derivations

Throughout this article, all linear spaces are assumed to be over a field K
of characteristic different from 2. A linear space V is said to be a G-graded by
an abelian group G if, there exists a family {V,}4eq of linear subspaces of V

such that V = @ V. The elements of V are said to be homogeneous of degree
g € G. The sezeci’ all homogeneous elements of V' is denoted H(V) = |J V.
A linear mapping f : V — V' of two G-graded linear spaces V = P ‘gijand
V' = gGGBG V, is called homogeneous of degree d if f(V,) C V/,,, forgZﬁ g €@G.
Homogeneous linear maps of degree zero, f(V,) C Vj for any g € G, are also

called even. In Zs-graded linear spaces A = Ay @ A, the elements of A; are
homogeneous of degree (parity) j € Za, and the set of all homogeneous elements
is H(A) = ApU A;. The parity of a homogeneous element = € H(A) is denoted
|z

Definition 2.1 ([I4, 23]). Hom-Lie algebras are triples (g, [.,.], «), where g is
a linear space, [.,.] : g X g — g is a bilinear map and o : g — g is a linear map
satisfying for all x,y,z € g,

[z, y] = —[y,z], Skew-symmetry (2.1)
[a(x), [y, 2]] + [a(y), [z, 2]] + [a(2), [z, y]] = 0, Hom-Lie Jacobi identity (2.2)

(1) Hom-Lie algebra is called a multiplicative hom-Lie algebra if a is an
algebra morphism, o([.,.]) = ([a(.),a(.)]), meaning that a([z,y]) =
[o(z), a(y)] for any z,y € g.

(2) Multiplicative hom-Lie algebra is called regular, if « is an automor-
phism.
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From the point of view of Hom-algebras, Lie algebras are a special subclass
of Hom-Lie algebras obtained when « = id in Definition 2.

Now, we recall the notion of hom-Lie superalgebras as generalization of Lie
superalgebras that were considered in [24, 25)].

Definition 2.2 ([2, T9]). Hom-Lie superalgebras are tripples (g, [.,.], &) which
consist of Zia-graded linear space g = go®g1, an even bilinear map [.,.] : gxg —
g and an even linear map « : g — g satisfying the super skew-symmetry and
hom-Lie super Jacobi identities for homogeneous elements x,y, z € H(g),

[z,y] = —(—1)‘1‘“"[3/,33], Super skew-symmetry
(2.3)

(—1)l = (@), [y, 2] + (=) a(y), [z, 2] + (=) [a(2), [z, 9] = 0.
(2.4)

Super Hom-Jacobi identity

(1) Hom-Lie superalgebra is called multiplicative Hom-Lie superalgebra, if
« is an algebra morphism, a([z,y]) = [a(x), a(y)] for any z,y € g.

(2) Multiplicative hom-Lie superalgebra is called regular, if v is an algebra
automorphism.

In skew-symmetric hom-superalgebras, the super hom-Jacobi identity can
be presented equivalently in the form of super hom-Leibniz rule for the maps
ady, = [z,.]: g — g,

(@), [y, =]] = [l y], al(2)] + (=) ¥ [a(y), [z, 2]). (2.5)

Remark 2.3. If skew-symmetry () does not hold, then (E4) and (E3H)
are not necessarily equivalent, defining different Hom-superalgebra structures.
The Hom-superalgebras defined by just super algebras identity (E33) without re-
quiring super hom-skew-symmetry on homogeneous elements are Leibniz Hom-
superalgebras, a special class of general T'-graded quasi-Leibniz algebras (color
quasi-Leibniz algebras) first introduced in [IR, I9)].

Remark 2.4. In any hom-Lie superalgebra, (go, [.,.], @) is a hom-Lie algebra
since [go, go] € go and a(go) € go and (—1)lllPl = (=1)0 =1 fora,b € go. Thus,
hom-Lie algebras can be also seen as special class of hom-Lie superalgebras when
g1 = {0}.

As for all hom-superalgebras, an even homomorphism ¢ : g — g’ of the hom-

Lie superalgebras (g, [.,.],«) and (¢/,[.,.]’, ) is said to be a homomorphism
of hom-Lie superalgebras, if ¢lu,v] = [¢(u),$(v))] and poa = S o ¢. The
hom-Lie superalgebras (g, [.,.],«) and (¢/,[.,.]’, 8) are isomorphic, if there is a

hom-Lie superalgebra homomorphism ¢ : g — g’ such that ¢ be bijective [2Z].
Hom-subalgebras of hom-Lie superalgebra (g, [.,.], &) are defined as Zy-graded
linear subspaces I = (INgy) @ (INg1) C g closed under both « and [., .|, that is
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a(I) C I and [I,I] C I. Hom-subalgebra [ is called a hom-ideal of the hom-Lie
superalgebra g, if [, g] C I, and notation I < g is used in this case.

Hom-Lie subalgebra I of a hom-Lie superalgebra is called commutative if
[I,I] = 0. If T is not abelian, then [z,y] # 0 for some non-zero elements
z,y € 1.

Definition 2.5 ([21]). The center of a hom-Lie superalgebra g is defined as
Clg) ={zeg:[r,g] = 0}.

The centralizer of a hom-ideal I in a hom-Lie superalgebra g is defined as
Co(I)={ze€g:[z,I] =0}

In any hom-Lie superalgebra (g = go®gi, [, -], @), the center is the centraliser
of hom-ideal g in (g, [.,.], @), that is C(g) = Cy(g).

Lemma 2.6. Let (g,[.,.],@) be a hom-Lie superalgebra. If (g,].,.], @) is a mul-
tiplicative hom-Lie superalgebra with surjective «, that is «([.,.]) = [a(.), a(.)]
and a(g) = g, then the center C(g) is a commutative hom-ideal in (g, [.,.], ).

Proof. The hom-supersubspace C(g) = (C(g)Ngo)® (C(g) Ng1) of the hom-Lie
superalgebra (g, [.,.],«) is closed under [.,.] and «. Indeed, a(C(g)) C C(g),
since the preimage set a~!(y) # 0) of any y € g is non-empty by surjectivity of
a, and

Ve Clg)y€g: o)y = la),ala™ ()] = a(lr,a” (y)]) = a{0}) = {0}.
Moreover, [C(g),C(g)] = [C(g),8] = {0} C C(g) by definition of the center.
Hence, C(g) is commutative hom-ideal. O

Lemma 2.7. Let (g, [.,.], @) be a multiplicative hom-Lie superalgebra, (a([.,.]) =
[a(),a()]). If I is a hom-ideal I in (g,[.,.], ) such that « is surjective on I,
that is o(I) =

(1) Cg(I) is a hom-ideal in hom-Lie superalgebra (g, [.,.], ).

C(I) = Cr(I) is a commutative hom-ideal in the hom-Lie superalgebra
[.,.]r,ar), where [.,.]r and g are restrictions of [.,.] and « to I.
(3) If (g, [.,.], @) is a multiplicative hom-Lie superalgebra with surjective c,

that is o([.,.]) = [a(.),a(.)] and a(g) = g, then the center C(g) is a

commutative hom-ideal in (g, |.,.], @).

Proof. For any hom-ideal I, the hom-supersubspace Cy(I) = (Cy(I)) N go) B
(Cg(I)) N g1) of the hom-Lie superalgebra (g, [.,.],) is closed under [.,.] if
a(I) = I, since by super hom-Jacobi identity (23), definition of the centralizer,
and the condition I = «(I) of surjectivity of the restriction of o on I,

VaeelINH(g), y,z € Cy(I)NH(g) :
[x,y] =0, [Oé(y), [x,z]] = [a(y),O] =0,
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which yields

(@), [y, 21] = [z, 9], a(2)] + (=1)*¥/[a(y), [, 2]] = 0.
Thus

which give us
[Co(1), Co(D)] <
The hom-supersubspace Cy(I) = (Cy(I))Ng

since $) of the centraliser, surjectivity «(I)
of a yield

VaeCy(I)NH(g):
[a(Cy (1)), I] = [a(Cq(1)), a(I)] = a([Cq (1), I]) € a({0}) = {0}
which yields

& (Cy(I))Ng1) is closed under «,
I of a on I and multiplicativity

Cy (D).
0)

a(Cy(1)) € Co(1).

Thus, Cg(I) is a hom-supersubalgebra in the hom-superalgebra (g, [.,.], ®).
Moreover,

VeelINH(g), yecgnH(g),zec Cy(I)NH(g):
[z,y] € I, [a(y), [z, 2]] = [a(y),0] = O,
which yields
[a (), [y, 2]] = [[z, 4], a(2)] + (=1)*W[a(y), [, 2] € I.

Thus

1, [0, Co(D)) &

[Oé([), [97 Cg (I)H €l
which give us
9, Cq(1)] C Cy(I).
Hence, Cy(I) is a hom-ideal. O
Now, we need the following definition throughout the rest of the paper.

Definition 2.8 ([@,19]). A representation of the hom-Lie superalgebra (g, [.,.], @)
on a Zs-graded linear space V.= Vg @ Vi with respect to g € gl(V)g is an even
linear map p : g — gl(V'), such that for all homogeneous x,y € H(g),
pla(z)) o = fop(x),
p([z,y]) o B p(a(@)) o p(y) — (=1 p(a(y)) o p(x).
A representation 'V of g is called irreducible or simple, if it has no nontrivial
subrepresentations. Otherwise V is called reducible.
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For any linear transformation 7' : X +— X of a set X, and any nonnegative
integer s, the s-times composition is 7% = T o---oT (s—times), T° =
Id, T' =T, and if T is invertible with inverse map T 'g — g, then T—° =
T lo---oT™1 (s—times).

Next, we recall the notion of a®-derivations.

Definition 2.9 ([4]). Let (g,[.,.]g,«) be a hom-Lie superalgebra. For any
nonnegative integer s, we call D € (End(g));, where i € Z, an «o®-derivation

of the multiplicative hom-Lie superalgebra (g,[.,.]g, ), if for all homogeneous
z,y € H(g),
Doa = aolD,
D(z,yls) = [D(x),0*)lg + (1) [a*(x), D(y)]q-

For any = € g satisfying a(z) = x, the mapping ads(x) : g — g defined
for all y € g by ads(z)(y) = [z,a°(y)]y, is a a®Fl-derivation, called an inner
a*Tl-derivation [4], and the set Inngs+1(g) = {{z,a*()]y | = € g9, a(z) =z}
is a linear space in Der,s+1(g).

Now, by using the above defenitions and lemmas, we generalized some results
from hom-Lie superalgebras to sympathetic hom-Lie superalgebras which are
expressed in the next section.

3. Sympathetic hom-Lie superalgebras

In this section we introduce the notion of a sympathetic hom-Lie superalge-
bra and we state some results about it.

Definition 3.1. A hom-Lie superalgebra g is called sympathetic hom-Lie su-
peralgebra if g satisfies the following two conditions.

* C(g)=0

°[g.al=09g

b Derat‘*'l(g) = adt(g)v

for any nonnegative integer t.

Now, we define the notion of direct factor and characteristic hom-ideal as
below.

Definition 3.2. Let g be a hom-Lie superalgebra, A be a graded hom-ideal of
g. Then A is said to be a direct factor if there exists a graded hom-ideal B of
g such that g = A @ B.

Definition 3.3. Let g be a hom-Lie superalgebra, A be a graded subspace of g.
Then A is called characteristic hom-ideal if for every D € Derqe+1(g), D(A) C
A.
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Lemma 3.4. Let (g,[.,.], @) be a multiplicative hom-Lie superalgebra with sur-
jective a and A be a graded hom-ideal of g. If A is perfect, then A is a charac-
teristic hom-ideal of g.

Proof. Let D € Deryi+1(g) and x,y € A. Then by defenition of af-derivation
we have

D([z,y)) = [D(x), o' (y)] + ()| D||z][a"(2), D(y)] € A.

Since A is perfect, then we have D(A) C A. Thus A is a characteristic hom-
ideal. O

By above notation, we have the following proposition.

Proposition 3.5. Let (g,[.,.], @) be a perfect multiplicative hom-Lie superal-
gebra with surjective o , A be a graded hom-ideal of g. If A is a direct factor
of g, then A is perfect.

Proof. Since A is a direct factor of g, then there exists a graded hom-ideal
B of g such that g = A ® B, in particular, [A4,B] = {0}. It follows that
[9,9] = [A, Al ® [B, B]. So both A and B are perfect. O

By above defenitions and propositions, one can easily check the following
proposition.

Proposition 3.6. Let (g,][.,.],«) be a multiplicative hom-Lie superalgebra with
surjective a and trivial center. Let A be a direct factor of g. Then C(A) = {0}.

Now, we consider the sympathetic hom-Lie superalgebra to state some re-
sults.

Proposition 3.7. Let (g, [.,.], @) be a multiplicative hom-Lie superalgebra with
surjective o and A be a sympathetic graded hom-ideal of g. Then there exists a
graded hom-ideal B such that g = A ® B.

Proof. Let B = C4(A). Since « is surjective then Cy(A) is a graded hom-ideal
of g. We know that A < g, then For any = € g, adi(z) € Derye+1(A). By
using Dere+1(A) = adi(A), there exists a derivation D in Der,i+1(A) such
that ad:(z) = D. So there exists y € A such that

D(z) = [z, a(2)] = [y, a(2)],
for all z € A. Then [z — y,a(z)] = 0 and then 2 —y € Cy4(A) = B. Hence
z=>b+yforsomeb e B. ANB = ANCy(A) = Ca(A) = {0}, since A is
sympathetic. Therefore g = A @ B. |

Proposition 3.8. Let (g,].,.],«) be a sympathetic multiplicative hom-Lie su-
peralgebra with surjective o and A be a graded hom-ideal of g. Then A is a
direct factor of g if and only if A is sympathetic.
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Proof. Let A is a direct factor of g, then there exists a graded hom-ideal B of
g such that g = A @® B. Therefore g = [g,g] = [4, A] ® [B, B] and [A, A] = A.
Let D € Dergi+1(A) and d : g — g is defined as a linear map by d|4 = D,
d|B = 0. So, D belongs to Derq:+1(g). Then there exists g € g such that
d = ad,(g). Since g=A @ B and g = g; + g;, for g; € A and g; € B, therefore
D = ad;(g;). Thus we have Deryi+1(A) = adi(A). finally by Proposition BH
we have C'(A) = {0}. Therefore A is sympathetic.

Conversely, it is a direct results of the Proposition BZa. (]

By using above Proposition, we have the following consequences immedi-
ately.

Corollary 3.9. Let (g,].,.],a) be a multiplicative hom-Lie superalgebra with
surjective o and A be a sympathetic graded hom-ideal of g. Then A is a direct

factor of g.

Corollary 3.10. Let (g,[.,.], @) be a multiplicative hom-Lie superalgebra with
surjective a and A be a sympathetic graded hom-ideal of g. If Deryi+1(g) =
adi(g), then Dergi+1(A) = adi(A).
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