\mathbb{R}-Complex Finsler Spaces with an Arctangent Finsler Metric

Renu Gill ${ }^{a}$, Gauree Shanker ${ }^{b}$ and Ramdayal Singh Kushwaha ${ }^{c *}$
${ }^{a, c}$ Department of Mathematics and Statistics, Banasthali Vidyapith, Tonk, Rajasthan-India
${ }^{b}$ Department of Mathematics and Statistics, Central University of Punjab, Bathinda, Punjab, India

```
E-mail: renu3119@gmail.com
E-mail: gauree.shanker@cup.edu.in
E-mail: bhuramdayal@gmail.com
```


Abstract

In this paper, we have defined the concept of the \mathbb{R}-complex Finsler space with an arctangent (α, β)-metric $F=\alpha+\epsilon \beta+\beta \tan ^{-1}(\beta / \alpha)$. For this metric, we have obtained the fundamental metric tensor fields $g_{i j}$ and $g_{i \bar{j}}$ as well as their determinants and inverse tensor fields. Further, some properties of non-Hermitian \mathbb{R}-complex Finsler spaces with this metric have been described.

Keywords: Complex Finsler space, \mathbb{R}-complex Finsler space, Fundamental metric tensors.

1. Introduction

The concept of (α, β)-metric has multiple applications in Physics, Ecology, and Biology $[7,15]$. It was investigated first by M. Matsumoto in perspective of the generalization of Rander's metric [9]. Afterward, many geometers studied it in great detail and have derived different kinds of (α, β)-metrics like the general (α, β)-metric, Kropina metric, Einstein metric, Matsumoto metric, and Exponential metric etc. in some different geometrical points of view.

The theories of \mathbb{R}-complex Finsler spaces are very new and it was introduced first by G. D. Rizza [13]. G. Munteanu and M. Purcaru [11] have extended the idea of the complex Finsler spaces $[1,3,10]$ and got another class of such

[^0]spaces. N. Aldea [4] had investigated a class of complex Finsler spaces with two-dimensions. Recently, many researchers $[2,5,8]$ have obtained many fundamental results on \mathbb{R}-Complex Finsler spaces.

The paper follows ideas from real Finsler space with an arctangent metric and introduces the similar notion on \mathbb{R}-Complex Finsler Spaces with it defined by

$$
\begin{equation*}
F=\alpha+\epsilon \beta+\beta \tan ^{-1}\left(\frac{\beta}{\alpha}\right) . \tag{1.1}
\end{equation*}
$$

For the above mentioned metric, we have obtained the fundamental metric tensor fields $g_{i j}$ and $g_{i \bar{j}}$ along with their determinants and the inverse tensor fields. Further, we have discussed some properties of non-Hermitian \mathbb{R}-complex Finsler spaces with the metric given in equation (1.1).

2. \mathbb{R}-Complex Finsler Spaces

Let M be a complex manifold with $\operatorname{dim}_{c} M=n,\left(z^{k}\right)$ be local complex coordinates in a chart (U, ϕ) and $T^{\prime} M$ its holomorphic tangent bundle. It has a natural structure of complex manifold, $\operatorname{dim}_{c} T^{\prime} M=2 n$ and the induced coordinates in a local chart on $u \in T^{\prime} M$ are denoted by $u=\left(z^{k}, \eta^{k}\right)$. The changes of local coordinates in u are given by the rules:

$$
\begin{equation*}
z^{\prime k}=z^{\prime k}(z), \eta^{\prime k}=\frac{\partial z^{\prime k}}{\partial z^{j}} \eta^{j} \tag{2.1}
\end{equation*}
$$

The natural frame $\left\{\frac{\partial}{\partial z^{k}}, \frac{\partial}{\partial \eta^{k}}\right\}$ of $T_{u}^{\prime}\left(T^{\prime} M\right)$ transforms with the Jacobi matrix of equation (2.1) changes,

$$
\frac{\partial}{\partial z^{k}}=\frac{\partial z^{\prime j}}{\partial z^{k}} \frac{\partial}{\partial z^{\prime j}}+\frac{\partial^{2} z^{\prime j}}{\partial z^{k} \partial z^{h}} \eta^{h} \frac{\partial}{\partial \eta^{\prime j}}, \quad \frac{\partial}{\partial \eta^{k}}=\frac{\partial z^{\prime j}}{\partial z^{k}} \frac{\partial}{\partial \eta^{\prime j}} .
$$

A complex non-linear connection, briefly c.n.c, is a supplementary distribution $H\left(T^{\prime} M\right)$ to the vertical distribution $V\left(T^{\prime} M\right)$ in $T^{\prime}\left(T^{\prime} M\right)$. The vertical distribution is spanned by $\left\{\frac{\partial}{\partial \eta^{k}}\right\}$ and an adapted frame in $H\left(T^{\prime} M\right)$ is

$$
\frac{\delta}{\delta z^{k}}=\frac{\partial}{\partial z^{k}}-N_{k}^{j} \frac{\partial}{\partial \eta^{j}},
$$

where N_{k}^{j} are the coefficients of the c.n.c. and they have a certain rule of change at (2.1) so that $\frac{\delta}{\delta z^{k}}$ transform like vectors on the base manifold M. Next, we use the abbreviations:

$$
\partial_{k}=\frac{\partial}{\partial z^{k}}, \quad \delta_{k}=\frac{\delta}{\delta z^{k}}, \dot{\partial}_{k}=\frac{\partial}{\partial \eta^{k}}, \quad \partial_{\bar{k}}, \delta_{\bar{k}}, \dot{\partial}_{\bar{k}}
$$

for their conjugates. The dual adapted basis of $\left\{\delta_{k}, \dot{\partial}_{k}\right\}$ are $\left\{d z^{k}, \delta \eta^{k}=\right.$ $\left.d \eta^{k}+N_{j}^{k} d z^{j}\right\}$ and $\left\{d \bar{z}^{k}, \delta \bar{\eta}^{k}\right\}$ their conjugates.

Definition 2.1. [11] An \mathbb{R}-Complex Finsler metric on M is a continuous function $F: T^{\prime} M \rightarrow \mathbb{R}_{+}$satisfying:
i) $L:=F^{2}$ is smooth on $\widetilde{T^{\prime} M}$ (except the 0 sections),
ii) $F(z, \eta) \geq 0$, the equality holds if and only if $\eta=0$,
iii) $F(z, \lambda \eta, \bar{z}, \lambda \bar{\eta})=|\lambda| F(z, \eta, \bar{z}, \bar{\eta}), \forall \lambda \in \mathbb{R}$.

Using assertion (i) and (iii) of the definition 2.1, L is (2,0) homogeneous with respect to the real scalars λ, i.e., $L(z, \lambda \eta, \bar{z}, \lambda \bar{\eta})=\lambda^{2} L(z, \eta, \bar{z}, \bar{\eta}), \lambda \in \mathbb{R}$.

Definition 2.2. [6] An \mathbb{R}-Complex Finsler spaces with (α, β)-metric is a pair (M, F), where the fundamental function $F(z, \eta, \bar{z}, \bar{\eta})$ is \mathbb{R}-homogeneous by means of functions $\alpha(z, \eta, \bar{z}, \bar{\eta})$ and $\beta(z, \eta, \bar{z}, \bar{\eta})$,

$$
\begin{equation*}
F(z, \eta, \bar{z}, \bar{\eta})=F(\alpha(z, \eta, \bar{z}, \bar{\eta}), \beta(z, \eta, \bar{z}, \bar{\eta})), \tag{2.2}
\end{equation*}
$$

where

$$
\begin{aligned}
\alpha^{2}(z, \eta, \bar{z}, \bar{\eta}) & =\frac{1}{2}\left(a_{i j} \eta^{i} \eta^{j}+2 a_{i \bar{j}} \eta^{i} \bar{\eta}^{j}+a_{\bar{i} \bar{j}} \bar{\eta}^{i} \bar{\eta}^{j}\right) \\
& =\operatorname{Re}\left\{a_{i j} \eta^{i} \eta^{j}+a_{i \bar{j}} \eta^{i} \bar{\eta}^{j}\right\} \\
\beta(z, \eta, \bar{z}, \bar{\eta}) & =\frac{1}{2}\left(b_{i} \eta^{i}+b_{\bar{i}} \bar{\eta}^{i}\right) \\
& =\operatorname{Re}\left\{b_{i} \eta^{i}\right\}
\end{aligned}
$$

with $a_{i j}=a_{i j}(z), a_{i \bar{j}}=a_{i \bar{j}}(z)$ and $b_{i}=b_{i}(z), b_{i}(z) d z^{i}$ is a $(1,0)$-differential form on complex manifold M.

If $a_{i j}=0$ and $a_{i \bar{j}}$ invertible, then the space is said to be of Hermitian space. If $a_{i \bar{j}}=0$ and $a_{i j}$ invertible, then the space is called non-Hermitian space.

Indeed, α and β are homogeneous with respect to η and $\bar{\eta}$, i.e. $\alpha(z, \lambda \eta, \bar{z}, \lambda \bar{\eta})=$ $\lambda \alpha(z, \eta, \bar{z}, \bar{\eta})$ and $\beta(z, \lambda \eta, \bar{z}, \lambda \bar{\eta})=\lambda \beta(z, \eta, \bar{z}, \bar{\eta})$, for any $\lambda \in \mathbb{R}_{+}$. Since L is $(2,0)$ homogeneous with respect to λ, by using the homogeneity property following equalities hold [6]:

$$
\begin{align*}
\alpha L_{\alpha}+\beta L_{\beta} & =2 L, \\
\alpha L_{\alpha \alpha}+\beta L_{\alpha \beta} & =L_{\alpha}, \\
\alpha L_{\alpha \beta}+\beta L_{\beta \beta} & =L_{\beta}, \\
\alpha^{2} L_{\alpha \alpha}+2 \alpha \beta L_{\alpha \beta}+\beta^{2} L_{\beta \beta} & =2 L, \\
\frac{\partial \alpha}{\partial \eta^{i}} \eta^{i}+\frac{\partial \alpha}{\partial \bar{\eta}^{j}} \bar{\eta}^{j} & =\alpha, \\
\frac{\partial \beta}{\partial \eta^{i}} \eta^{i}+\frac{\partial \beta}{\partial \bar{\eta}^{j}} \bar{\eta}^{j} & =\beta, \tag{2.3}
\end{align*}
$$

where

$$
L_{\alpha}=\frac{\partial L}{\partial \alpha}, \quad L_{\beta}=\frac{\partial L}{\partial \beta}, \quad L_{\alpha \alpha}=\frac{\partial^{2} L}{\partial \alpha^{2}}, \quad L_{\beta \beta}=\frac{\partial^{2} L}{\partial \beta^{2}}, \quad L_{\alpha \beta}=\frac{\partial^{2} L}{\partial \alpha \partial \beta} .
$$

We consider

$$
\frac{\partial \alpha}{\partial \eta^{i}}=\frac{1}{2 \alpha}\left(a_{i j} \eta^{j}+a_{i \bar{j}} \bar{\eta}^{j}\right)=\frac{1}{2 \alpha} l_{i}, \quad \frac{\partial \beta}{\partial \eta^{i}}=\frac{1}{2} b_{i},
$$

and

$$
\begin{aligned}
\eta_{i} & =\frac{\partial L}{\partial \eta^{i}}=\frac{\partial}{\partial \eta^{i}} F^{2}=2 F \frac{\partial F}{\partial \eta^{i}} \\
& =\rho_{0} l_{i}+\rho_{1} b_{i}
\end{aligned}
$$

where

$$
\begin{gather*}
l_{i}=a_{i j} \eta^{j}+a_{i \bar{j}} \bar{\eta}^{j}, \tag{2.4}\\
b_{l}=a_{k l} b^{k}+a_{l \bar{k}} b^{\bar{k}}, \tag{2.5}\\
\rho_{0}=\frac{1}{2} \frac{L_{\alpha}}{\alpha}, \quad \rho_{1}=\frac{1}{2} L_{\beta} . \tag{2.6}
\end{gather*}
$$

Differentiating ρ_{0} and ρ_{1} w.r.t. η^{j}, we get

$$
\begin{aligned}
& \frac{\partial \rho_{0}}{\partial \eta^{j}}=\rho_{-2} l_{j}+\rho_{-1} b_{j} \\
& \frac{\partial \rho_{1}}{\partial \eta^{i}}=\rho_{-1} l_{i}+\mu_{0} b_{i}
\end{aligned}
$$

where

$$
\begin{equation*}
\rho_{-2}=\frac{\alpha L_{\alpha \alpha}-L_{\alpha}}{4 \alpha^{3}}, \rho_{-1}=\frac{L_{\alpha \beta}}{4 \alpha}, \mu_{0}=\frac{L_{\beta \beta}}{4} . \tag{2.7}
\end{equation*}
$$

The quantities $\rho_{-2}, \rho_{-1}, \rho_{0}, \rho_{1}, \mu_{0}$ are the invariants of the \mathbb{R}-complex Finsler space with (α, β)-metric [14].

In [11], an \mathbb{R}-Complex Finsler space the following conditions hold:

$$
\begin{aligned}
& \frac{\partial L}{\partial \eta^{i}} \eta^{i}+\frac{\partial L}{\partial \bar{\eta}^{i}} \bar{\eta}^{i}=2 L ; g_{i j} \eta^{i}+g_{j \bar{i}} \bar{\eta}^{i}=\frac{\partial L}{\partial \eta^{j}} ; \\
& \frac{\partial g_{i k}}{\partial \eta^{j}} \eta^{j}+\frac{\partial g_{i k}}{\partial \bar{\eta}^{j}} \bar{\eta}^{j}=0 ; \frac{\partial g_{i \bar{k}}}{\partial \eta^{j}} \eta^{j}+\frac{\partial g_{i \bar{k}}}{\partial \bar{\eta}^{j}} \bar{\eta}^{j}=0 ; \\
& 2 L=g_{i j} \eta^{i} \eta^{j}+g_{i \bar{j}} \bar{\eta}^{i} \bar{\eta}^{j}+2 g_{i \bar{j}} \eta^{i} \bar{\eta}^{j}
\end{aligned}
$$

where

$$
g_{i j}=\frac{\partial^{2} L}{\partial \eta^{i} \partial \eta^{j}}, g_{i \bar{j}}=\frac{\partial^{2} L}{\partial \eta^{i} \partial \bar{\eta}^{j}}, \text { and } g_{\bar{i} \bar{j}}=\frac{\partial^{2} L}{\partial \eta^{i} \partial \bar{\eta}^{j}},
$$

are the metric tensors of space.
Theorem 2.3. [6] The metric tensor fields of \mathbb{R}-complex Finsler space with (α, β)-metric are given by

$$
\begin{align*}
& g_{i j}=\rho_{0} a_{i j}+\rho_{-2} l_{i} l_{j}+\mu_{0} b_{i} b_{j}+\rho_{-1}\left(b_{j} l_{i}+b_{i} l_{j}\right), \\
& g_{i \bar{j}}=\rho_{0} a_{i \bar{j}}+\rho_{-2} l_{i} l_{\bar{j}}+\mu_{0} b_{i} b_{\bar{j}}+\rho_{-1}\left(b_{\bar{j}} l_{i}+b_{i} l_{\bar{j}}\right), \tag{2.8}
\end{align*}
$$

where the quantities $\rho_{-2}, \rho_{-1}, \rho_{0}, \rho_{1}, \mu_{0}$ are defined in the symbols of equations (2.6) and (2.7).

For obtaining the inverse and determinant of the tensor field $g_{i j}$, one can follow the following proposition:

Proposition 2.4. [5] Suppose

- $\left(Q_{i j}\right)$ is a non-singular $n \times n$ complex matrix with inverse $\left(Q^{j i}\right)$;
- C_{i} and $C_{\bar{i}}:=\bar{C}_{i}, i=1, \ldots, n$ are complex numbers;
- $C^{i}:=Q^{j i} C_{j}$ and C_{i} are conjugates to each other; $C^{2}:=C^{i} C_{i}=$ $\bar{C}^{i} C_{\bar{i}} ; H_{i j}:=Q_{i j} \pm C_{i} C_{j}$.

Then
i) $\operatorname{det}\left(H_{i j}\right)=\left(1 \pm C^{2}\right) \operatorname{det}\left(Q_{i j}\right)$,
ii) whenever $1 \pm C^{2} \neq 0$, the matrix $\left(H_{i j}\right)$ is invertible and its inverse is

$$
H^{j i}=Q^{j i} \mp \frac{1}{1 \pm C^{2}} C^{i} C^{j}
$$

3. \mathbb{R}-Complex Finsler Space with an Arctangent Metric

An \mathbb{R}-Complex Finsler spaces (M, F) is known as \mathbb{R}-Complex arctangent Finsler space if F satisfies the equation (2.2).

From the definition 2.1 (i), we have

$$
\begin{equation*}
L(\alpha, \beta)=\left\{\alpha+\epsilon \beta+\beta \tan ^{-1}(\beta / \alpha)\right\}^{2} . \tag{3.1}
\end{equation*}
$$

From above equation, we get

$$
\begin{align*}
& L_{\alpha}=\frac{2 \alpha^{2}}{\alpha^{2}+\beta^{2}}\left\{\alpha+\epsilon \beta+\beta \tan ^{-1}(\beta / \alpha)\right\} \\
& L_{\alpha \alpha}=\frac{2 \alpha}{\left(\alpha^{2}+\beta^{2}\right)^{2}}\left[2 \beta^{3}\left\{\epsilon+\tan ^{-1}(\beta / \alpha)\right\}+\alpha\left(\alpha^{2}+2 \beta^{2}\right)\right], \\
& L_{\alpha \beta}=\frac{2 \alpha^{2}}{\left(\alpha^{2}+\beta^{2}\right)^{2}}\left[\left(\alpha^{2}-\beta^{2}\right)\left\{\epsilon+\tan ^{-1}(\beta / \alpha)\right\}-\beta \alpha\right] \\
& L_{\beta}=\frac{2}{\alpha^{2}+\beta^{2}}\left\{\alpha+\epsilon \beta+\beta \tan ^{-1}(\beta / \alpha)\right\}\left[\left(\alpha^{2}+\beta^{2}\right)\left\{\epsilon+\tan ^{-1}(\beta / \alpha)\right\}+\beta \alpha\right], \\
& L_{\beta \beta}=\frac{2}{\left(\alpha^{2}+\beta^{2}\right)^{2}}\left[\left[\left(\alpha^{2}+\beta^{2}\right)\left\{\epsilon+\tan ^{-1}(\beta / \alpha)\right\}+\beta \alpha\right]^{2}\right. \\
& \left.+2 \alpha^{3}\left\{\alpha+\epsilon \beta+\beta \tan ^{-1}(\beta / \alpha)\right\}\right] \tag{3.2}
\end{align*}
$$

Substituting $L_{\alpha}, L_{\alpha \alpha}, L_{\beta}, L_{\beta \beta}$, and $L_{\alpha \beta}$ from above in the system of equations (2.3), we get

$$
\begin{align*}
& \alpha L_{\alpha}+\beta L_{\beta}=2\left\{\alpha+\epsilon \beta+\beta \tan ^{-1}(\beta / \alpha)\right\}^{2}=2 L \tag{3.3}\\
& \alpha L_{\alpha \alpha}+\beta L_{\alpha \beta}=\frac{2 \alpha^{2}}{\alpha^{2}+\beta^{2}}\left\{\alpha+\epsilon \beta+\beta \tan ^{-1}(\beta / \alpha)\right\}=L_{\alpha} \tag{3.4}\\
& \alpha L_{\alpha \beta}+\beta L_{\beta \beta}=L_{\beta} \\
& \alpha^{2} L_{\alpha \alpha}+2 \alpha \beta L_{\alpha \beta}+\beta^{2} L_{\beta \beta}=2 L
\end{align*}
$$

In the same way, one can verify the rest equalities of the system of equations (2.3).

Proposition 3.1. The invariants of an \mathbb{R}-Complex Finsler space (M, F), where F is an arctangent metric, are given in the system of equations:
Now, using the equations (2.6), (2.7), and (3.2), we get

$$
\begin{align*}
\rho_{0} & =\frac{\alpha}{\alpha^{2}+\beta^{2}}\left\{\alpha+\epsilon \beta+\beta \tan ^{-1}(\beta / \alpha)\right\}, \\
\rho_{1} & =\frac{1}{\alpha^{2}+\beta^{2}}\left\{\alpha+\epsilon \beta+\beta \tan ^{-1}(\beta / \alpha)\right\}\left[\left(\alpha^{2}+\beta^{2}\right)\left\{\epsilon+\tan ^{-1}(\beta / \alpha)\right\}+\beta \alpha\right], \\
\rho_{-2} & =\frac{-\beta}{2 \alpha\left(\alpha^{2}+\beta^{2}\right)^{2}}\left[\left(\alpha^{2}-\beta^{2}\right)\left\{\epsilon+\tan ^{-1}(\beta / \alpha)\right\}-\beta \alpha\right], \\
\rho_{-1} & =\frac{\alpha}{2\left(\alpha^{2}+\beta^{2}\right)^{2}}\left[\left(\alpha^{2}-\beta^{2}\right)\left\{\epsilon+\tan ^{-1}(\beta / \alpha)\right\}-\beta \alpha\right], \\
\mu_{0} & =\frac{1}{2\left(\alpha^{2}+\beta^{2}\right)^{2}}\left[\left[\left(\alpha^{2}+\beta^{2}\right)\left\{\epsilon+\tan ^{-1}(\beta / \alpha)\right\}+\beta \alpha\right]^{2}\right. \\
& \left.+2 \alpha^{3}\left\{\alpha+\epsilon \beta+\beta \tan ^{-1}(\beta / \alpha)\right\}\right] . \tag{3.5}
\end{align*}
$$

Theorem 3.2. The metric tensor fields of an \mathbb{R}-Complex Finsler space (M, F), where F is an arctangent metric, are given in equations:
Now, using the invariants given in equation (3.5) and theorem 2.3, we get

$$
\begin{align*}
g_{i j} & =\frac{\alpha}{\alpha^{2}+\beta^{2}}\left\{\alpha+\epsilon \beta+\beta \tan ^{-1}(\beta / \alpha)\right\} a_{i j} \\
& +\frac{-\beta}{2 \alpha\left(\alpha^{2}+\beta^{2}\right)^{2}}\left[\left(\alpha^{2}-\beta^{2}\right)\left\{\epsilon+\tan ^{-1}(\beta / \alpha)\right\}-\beta \alpha\right] l_{i} l_{j} \\
& +\frac{1}{2\left(\alpha^{2}+\beta^{2}\right)^{2}}\left[\left[\left(\alpha^{2}+\beta^{2}\right)\left\{\epsilon+\tan ^{-1}(\beta / \alpha)\right\}+\beta \alpha\right]^{2}\right. \\
& \left.+2 \alpha^{3}\left\{\alpha+\epsilon \beta+\beta \tan ^{-1}(\beta / \alpha)\right\}\right] b_{i} b_{j} \\
& +\frac{\alpha}{2\left(\alpha^{2}+\beta^{2}\right)^{2}}\left[\left(\alpha^{2}-\beta^{2}\right)\left\{\epsilon+\tan ^{-1}(\beta / \alpha)\right\}-\beta \alpha\right]\left(b_{j} l_{i}+b_{i} l_{j}\right) \tag{3.6}
\end{align*}
$$

and

$$
\begin{align*}
g_{i \bar{j}} & =\frac{\alpha}{\alpha^{2}+\beta^{2}}\left\{\alpha+\epsilon \beta+\beta \tan ^{-1}(\beta / \alpha)\right\} a_{i \bar{j}} \\
& -\frac{\beta}{2 \alpha\left(\alpha^{2}+\beta^{2}\right)^{2}}\left[\left(\alpha^{2}-\beta^{2}\right)\left\{\epsilon+\tan ^{-1}(\beta / \alpha)\right\}-\beta \alpha\right] l_{i} l_{\bar{j}} \\
& +\frac{1}{2\left(\alpha^{2}+\beta^{2}\right)^{2}}\left[\left[\left(\alpha^{2}+\beta^{2}\right)\left\{\epsilon+\tan ^{-1}(\beta / \alpha)\right\}+\beta \alpha\right]^{2}\right. \\
& \left.+2 \alpha^{3}\left\{\alpha+\epsilon \beta+\beta \tan ^{-1}(\beta / \alpha)\right\}\right] b_{i} b_{\bar{j}} \\
& +\frac{\alpha}{2\left(\alpha^{2}+\beta^{2}\right)^{2}}\left[\left(\alpha^{2}-\beta^{2}\right)\left\{\epsilon+\tan ^{-1}(\beta / \alpha)\right\}-\beta \alpha\right]\left(b_{\bar{j}} l_{i}+b_{i} l_{\bar{j}}\right) . \tag{3.7}
\end{align*}
$$

Or
the equations (3.6) and (3.7) can be written in the following equivalent forms:

$$
\begin{align*}
& g_{i j}=\rho_{0}\left(a_{i j}-t_{1} l_{i} l_{j}+t_{2} b_{i} b_{j}+t_{3} \eta_{i} \eta_{j}\right), \tag{3.8}\\
& g_{i \bar{j}}=\rho_{0}\left(a_{i \bar{j}}-t_{1} l_{i} l_{\bar{j}}+t_{2} b_{i} b_{\bar{j}}+t_{3} \eta_{i} \eta_{\bar{j}}\right), \tag{3.9}
\end{align*}
$$

where

$$
\begin{align*}
t_{1} & =\frac{\left[\left(\alpha^{2}-\beta^{2}\right)\left\{\epsilon+\tan ^{-1}(\beta / \alpha)\right\}-\beta \alpha\right]}{2 \alpha^{2}\left(\alpha^{2}+\beta^{2}\right)\left[\left(\alpha^{2}+\beta^{2}\right)\left\{\epsilon+\tan ^{-1}(\beta / \alpha)\right\}+\beta \alpha\right]} \\
t_{2} & =\frac{\left\{\alpha+\epsilon \beta+\beta \tan ^{-1}(\beta / \alpha)\right\}}{\alpha} \\
t_{3} & =\frac{\left(\alpha^{2}+\beta^{2}\right)\left[\left(\alpha^{2}-\beta^{2}\right)\left\{\epsilon+\tan ^{-1}(\beta / \alpha)\right\}-\beta \alpha\right]}{2 \alpha\left\{\alpha+\epsilon \beta+\beta \tan ^{-1}(\beta / \alpha)\right\}^{3}\left[\left(\alpha^{2}+\beta^{2}\right)\left\{\epsilon+\tan ^{-1}(\beta / \alpha)\right\}+\beta \alpha\right]} . \tag{3.10}
\end{align*}
$$

Proof. Using the relations (3.5) in theorem 2.3 by direct calculations, we obtain the results.

4. Non-Hermitian \mathbb{R}-Complex Finsler Space with an Arctangent Metric

In this section, we deal with the non-Hermitian \mathbb{R}-Complex Finsler space with an arctangent metric given in equation (1.1).

For the non-Hermitian \mathbb{R}-Complex Finsler space ($a_{i \bar{j}}=0$), we use the following abbreviations:

$$
\begin{align*}
l_{i} & =a_{i j} \eta^{j}, \gamma=a_{j k} \eta^{j} \eta^{k}=l_{k} \eta^{k}, \theta=b_{j} \eta^{j}, \omega=b_{j} b^{j}, \\
b^{k} & =a^{j k} b_{j}, b_{l}=b^{k} a_{k l}, \delta=a_{j k} \eta^{j} b^{k}=l_{k} b^{k}, l^{j}=a^{j i} l_{i}=\eta^{j} . \tag{4.1}
\end{align*}
$$

Theorem 4.1. For a non-Hermitian \mathbb{R}-Complex Finsler space (M, F), where F is an arctangent metric, we have
i) the contravariant tensor $g^{j i}$ which is given in equation

$$
\begin{align*}
g^{j i}= & \frac{1}{\rho_{0}}\left[a^{j i}+\left\{\frac{t_{1}}{\tau_{1}}-\frac{\theta^{2} t_{1}^{2} t_{2}}{\tau_{1}^{2} \tau^{2}}\right\} \eta^{i} \eta^{j}-\frac{t_{2} b^{i} b^{j}}{\tau_{2}}-\frac{\theta t_{1} t_{2}\left(b^{i} \eta^{j}+b^{j} \eta^{i}\right)}{\tau_{1} \tau_{2}}\right. \\
& \left.-\frac{A^{2} \eta^{i} \eta^{j}+A B\left(b^{i} \eta^{j}+b^{j} \eta^{i}\right)+B^{2} b^{i} b^{j}}{\tau_{3}}\right] . \tag{4.2}
\end{align*}
$$

ii) The $\operatorname{det}\left(g_{i j}\right)$ which is given in equation

$$
\begin{equation*}
\operatorname{det}\left(g_{i j}\right)=\left(\rho_{0}\right)^{n} \tau_{1} \tau_{2} \tau_{3} \operatorname{det}\left(a_{i j}\right) \tag{4.3}
\end{equation*}
$$

where ρ_{0}, t_{1} and t_{2} are given in equations (3.5) and (3.10), rest terms are

$$
\begin{align*}
A & =\left\{1+\frac{t_{1}}{\tau_{1}}-\frac{\theta^{2} t_{1}^{2} t_{2}}{\left(\tau_{1}\right)^{2} \tau_{2}}\right\} \gamma-\frac{\theta t_{1} t_{2}}{\left(\tau_{1}\right)^{3} \tau_{2}} \\
B & =-\frac{t_{2} \theta}{\tau_{2}}-\frac{\theta t_{1} t_{2} \gamma}{\tau_{1} \tau_{2}} \\
\tau_{1} & =1-t_{1} \gamma \\
\tau_{2} & =1+t_{2}\left(\omega+\frac{t_{1} \theta^{2}}{\tau_{1}}\right) \\
\tau_{3} & =1+(A \gamma+B \theta) \sqrt{t_{3}} \tag{4.4}
\end{align*}
$$

Proof. Now, apply proposition 2.4 to $g_{i j}$ in equation (3.8) and follow the steps:
Step 1.[Suppose $Q_{i j}=a_{i j}$ and $C_{i}=\sqrt{t_{1}} l_{i}$]
From our assumption, we get

$$
Q^{j i}=a^{j i}
$$

and

$$
C^{2}=C_{i} C^{i}=\sqrt{t_{1}} l_{i} \times Q^{j i} \times C_{j}=\sqrt{t_{1}} l_{i} \times a^{j i} \times \sqrt{t_{1}} l_{j}=t_{1} \times l_{i} a^{j i} l_{j}=t_{1} \gamma
$$

By applying proposition 2.4, we get

$$
\begin{equation*}
\operatorname{det}\left(H_{i j}\right)=\operatorname{det}\left(a_{i j}-t_{1} l_{i} l_{j}\right)=\left(1-t_{1} \gamma\right) \operatorname{det}\left(a_{i j}\right)=\tau_{1} \operatorname{det}\left(a_{i j}\right), \tag{4.5}
\end{equation*}
$$

and, for $\tau_{1}=1-t_{1} \gamma \neq 0,\left(H_{i j}\right)=\left(a_{i j}-t_{1} l_{i} l_{j}\right)$ is invertible and its inverse is given by:

$$
\begin{equation*}
H^{j i}=a^{j i}+\frac{t_{1} \eta^{i} \eta^{j}}{\tau_{1}} . \tag{4.6}
\end{equation*}
$$

Step 2. [Suppose $Q_{i j}=a_{i j}-t_{1} l_{i} l_{j}$ and $C_{i}=\sqrt{t_{2}} b_{i}$]
Using the equations (4.1), (4.6), and our supposition, we get

$$
Q^{j i}=a^{j i}+\frac{t_{1} \eta^{i} \eta^{j}}{\tau_{1}}
$$

Using the previous equation, we get

$$
\begin{aligned}
C^{i}=Q^{j i} C_{j} & =\left(a^{j i}+\frac{t_{1} \eta^{i} \eta^{j}}{\tau_{1}}\right) \sqrt{t_{2}} b_{j} \\
& =\left(b^{i}+\frac{t_{1} \theta \eta^{i}}{\tau_{1}}\right) \sqrt{t_{2}}
\end{aligned}
$$

which implies

$$
C^{2}=t_{2}\left(\omega+\frac{t_{1} \theta^{2}}{\tau_{1}}\right)
$$

and

$$
1+C^{2}=1+t_{2}\left(\omega+\frac{t_{1} \theta^{2}}{\tau_{1}}\right)=\tau_{2}(\text { say })
$$

Now, by applying proposition 2.4 , we get

$$
\begin{equation*}
\operatorname{det}\left(H_{i j}\right)=\operatorname{det}\left(a_{i j}-t_{1} l_{i} l_{j}+t_{2} b_{i} b_{j}\right)=\tau_{1} \tau_{2} \operatorname{det}\left(a_{i j}\right) \tag{4.7}
\end{equation*}
$$

and, for τ_{2} and $\tau_{1} \neq 0$, the inverse of $\left(H_{i j}\right)=\left(a_{i j}-t_{1} l_{i} l_{j}+t_{2} b_{i} b_{j}\right)$ exists and it is

$$
\begin{align*}
H^{j i} & =a^{j i}+\left\{\frac{t_{1}}{\tau_{1}}-\frac{\theta^{2} t_{1}^{2} t_{2}}{\left(\tau_{1}\right)^{2} \tau_{2}}\right\} \eta^{i} \eta^{j}-\frac{t_{2} b^{i} b^{j}}{\tau_{2}} \\
& +\frac{\theta t_{1} t_{2}\left(b^{i} \eta^{j}+b^{j} \eta^{i}\right)}{\tau_{1} \tau_{2}} \tag{4.8}
\end{align*}
$$

Step 3. [Suppose $Q_{i j}=a_{i j}-t_{1} l_{i} l_{j}+t_{2} b_{i} b_{j}$ and $\left.C_{i}=\sqrt{t_{3}} \eta_{i}\right]$
Using the equation (4.8) and our supposition, we get

$$
\begin{aligned}
Q^{j i} & =a^{j i}+\left\{\frac{t_{1}}{\tau_{1}}-\frac{\theta^{2} t_{1}^{2} t_{2}}{\left(\tau_{1}\right)^{2} \tau_{2}}\right\} \eta^{i} \eta^{j}-\frac{t_{2} b^{i} b^{j}}{\tau_{2}} \\
& +\frac{\theta t_{1} t_{2}\left(b^{i} \eta^{j}+b^{j} \eta^{i}\right)}{\tau_{1} \tau_{2}}
\end{aligned}
$$

Using the previous equation, we get

$$
C^{i}=A \eta^{i}+B b^{i},
$$

where

$$
\begin{align*}
A & =\left\{1+\frac{t_{1}}{\tau_{1}}-\frac{\theta^{2} t_{1}^{2} t_{2}}{\left(\tau_{1}\right)^{2} \tau_{2}}\right\} \gamma-\frac{\theta t_{1} t_{2}}{\left(\tau_{1}\right)^{3} \tau_{2}}, \\
B & =-\frac{t_{2} \theta}{\tau_{2}}-\frac{\theta t_{1} t_{2} \gamma}{\tau_{1} \tau_{2}}, \tag{4.9}
\end{align*}
$$

which implies

$$
C^{2}=Q^{j i} C_{j}=(A \gamma+B \theta) \sqrt{t_{3}}, 1+C^{2}=1+(A \gamma+B \theta) \sqrt{t_{3}}=\tau_{3}(\text { say })
$$

and

$$
C^{i} C^{j}=A^{2} \eta^{i} \eta^{j}+A B\left(b^{i} \eta^{j}+b^{j} \eta^{i}\right)+B^{2} b^{i} b^{j} .
$$

Now, by using proposition 2.4, we get

$$
\begin{equation*}
\operatorname{det}\left(H_{i j}\right)=\operatorname{det}\left(a_{i j}-t_{1} l_{i} l_{j}+t_{2} b_{i} b_{j}+t_{3} \eta_{i} \eta_{j}\right)=\tau_{1} \tau_{2} \tau_{3} \operatorname{det}\left(a_{i j}\right) \tag{4.10}
\end{equation*}
$$

and for non-zero $\tau_{i}(i=1,2,3$,$) , the inverse of \left(H_{i j}\right)=\left(a_{i j}-t_{1} l_{i} l_{j}+t_{2} b_{i} b_{j}+\right.$ $t_{3} \eta_{i} \eta_{j}$) exists and it is

$$
\begin{align*}
H^{j i}=a^{j i} & +\left\{\frac{t_{1}}{\tau_{1}}-\frac{\theta^{2} t_{1}^{2} t_{2}}{\tau_{1}^{2} \tau^{2}}\right\} \eta^{i} \eta^{j}-\frac{t_{2} b^{i} b^{j}}{\tau_{2}}-\frac{\theta t_{1} t_{2}\left(b^{i} \eta^{j}+b^{j} \eta^{i}\right)}{\tau_{1} \tau_{2}} \\
& -\frac{A^{2} \eta^{i} \eta^{j}+A B\left(b^{i} \eta^{j}+b^{j} \eta^{i}\right)+B^{2} b^{i} b^{j}}{\tau_{3}} \tag{4.11}
\end{align*}
$$

But $g_{i j}=\rho_{0} H_{i j}$, where $H_{i j}$ is given in the previous equation. Thus,

$$
g^{j i}=\frac{1}{\rho_{0}} H^{j i}
$$

and

$$
\operatorname{det}\left(g_{i j}\right)=\left(\rho_{0}\right)^{n} \operatorname{det}\left(H_{i j}\right)
$$

Using the equations (4.10) and (4.11), we get

$$
\begin{align*}
g^{j i}= & \frac{1}{\rho_{0}}\left[a^{j i}+\left\{\frac{t_{1}}{\tau_{1}}-\frac{\theta^{2} t_{1}^{2} t_{2}}{\tau_{1}^{2} \tau^{2}}\right\} \eta^{i} \eta^{j}-\frac{t_{2} b^{i} b^{j}}{\tau_{2}}-\frac{\theta t_{1} t_{2}\left(b^{i} \eta^{j}+b^{j} \eta^{i}\right)}{\tau_{1} \tau_{2}}\right. \\
& \left.-\frac{A^{2} \eta^{i} \eta^{j}+A B\left(b^{i} \eta^{j}+b^{j} \eta^{i}\right)+B^{2} b^{i} b^{j}}{\tau_{3}}\right] \tag{4.12}
\end{align*}
$$

and

$$
\begin{equation*}
\operatorname{det}\left(g_{i j}\right)=\left(\rho_{0}\right)^{n} \tau_{1} \tau_{2} \tau_{3} \operatorname{det}\left(a_{i j}\right) \tag{4.13}
\end{equation*}
$$

Hence the statement holds.

Now, in a non-Hermitian \mathbb{R}-Complex Finsler space (M, F), where F is an arctangent metric, we have the following properties:

$$
\begin{gather*}
\gamma+\bar{\gamma}=l_{i} \eta^{i}+l_{\bar{j}} \eta^{\bar{j}}=a_{i j} \eta^{j} \eta^{i}+a_{\bar{j} \bar{k}} \eta^{\bar{k}} \eta^{\bar{j}}=2 \alpha^{2}, \tag{4.14}\\
\theta+\bar{\theta}=b_{j} \eta^{j}+b_{\bar{j}} \eta^{\bar{j}}=2 \beta, \delta=\theta . \tag{4.15}
\end{gather*}
$$

Proposition 4.2. Let us consider a non-Hermitian \mathbb{R}-Complex Finsler space (M, F), where F is an arctangent metric. This space satisfies the properties given in equations (4.14) and (4.15).

References

1. M. Abate and G. Patrizio, Finsler Metrics - A Global Approach, Lecture Notes in Math. (1951), Springer-Verlag, Berlin, 1994.
2. M. Abate and G. Patrizio, On some classes of \mathbb{R}-complex Hermitian Finsler spaces, manuscript, 2013 edition, 1994.
3. T. Aikou, Projective flatness of complex Finsler metrics, Publ. Math. Debrecen. 63(2003), 343-362.
4. N. Aldea, About a special class of two dimensional Finsler spaces, Indian J. Pure Appl. Math. 43(2)(2012), 107-127.
5. N. Aldea and G. Munteanu, On complex Finsler spaces with Randers metric, J. Korean Math. Soc. 46(5)(2009), 949-966.
6. N. Aldea and M. Purcaru, \mathbb{R}-complex Finsler spaces with (α, β)-metric, Novi Sad J. Math. 38(1)(2008), 1-9.
7. P. L. Antonelli, R. S. Ingarden, and M. Matsumoto, The theory of sprays and Finsler spaces with applications in Physics and Biology, Springer-Dordrecht, 2013.
8. G. Campean and G. Munteanu, \mathbb{R}-complex hermitian (α, β)-metrics, Bull. Transilvania. Univ. Brasov. 56(2)(2014), 15-28.
9. M. Matsumoto, Theory of Finsler spaces with (α, β)-metric, Rep. Math. Phys. 31(1992), 43-83.
10. G. Munteanu, Complex Spaces in Finsler, Lagrange and Hamilton Geometries, SpringerDordrecht, 2004.
11. G. Munteanu and M. Purcaru, On R-complex Finsler spaces, Balkan J. Geom. Appl. 14(1)(2009), 52-59.
12. M. Purcaru, On R-complex Finsler spaces with Kropina metric, Bull. Transilvania .Univ. Brasov. 53(4)(2011), 79-88.
13. G. D. Rizza, Structure dii Finsler di tippo quasi Hermitiano, Riv. Mat. Univ. Parma 4(1963), 83-106.
14. V. S. Sabãu and H. Shimada, Remarkable classes of (α, β)-metric spaces, Rep. on Math. Phys. 47(1)(2001), 31-48.
15. G. Shanker and R. S. Kushwaha, Nonholonomic frame for Finsler spaces with a special quartic metric, Indian J. pure appl. Math. 120(2)(2018), 283-290.

Received: 18.01.2022
Accepted: 01.06.2022

[^0]: * Corresponding Author

 AMS 2020 Mathematics Subject Classification: 53B40, 53C60

