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Abstract. In this paper, we use the mean curvature flow PDE and geodesic

ODE to smooth and trace evolving curves as boundaries of minimal surfaces

for a gray-scale image to capture their boundaries.
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1. Introduction

Riemannian geometry is one of the active branches of mathematics with lots

of applications in engineering and science. Among them, a warm interaction

is whenever the inner products are welcomed instead of the usual Euclidean

distance metrics. Especially, Riemannian metrics provide a generalization of

computing the arc-length for non-orthogonal coordinate systems. There are

numerous cases in which the mathematical modeling of the problem deals with

curvature properties of the space and so, it needs to interact with Riemannian

geometry. See [16] for more explanations for some related case studies. One

of the situations that we encounter with non-flat spaces is signal processing.

Especially, images as some important signals are one of the vital concepts in

modern industry. Image processing applications have a large and massive range

such as artificial intelligence, the internet of things, robotics, data compression,

and lots of other applications. For a classical reference about some pioneer

mathematical modeling of vision, see [8]. Especially, in modern approaches
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to image processing, there are lots of applications of Riemannian geometry

tools. For example, see [2] for an approach to object segmentation using energy

minimizing curves. See [7] for a fast tensorial algorithm, [5] for vital edge

detection in medicine and [1] to a Clifford algebras approach to edge detection.

There are also some classical references for edge detection such as [4]. See [15]

for a novel discussion about blurring-invariant Riemannian metrics.

Some fundamental surveys with lots of algorithms and reviews in this frame-

work are [10, 13].

Finding the edges of the image returns to an equivalent situation in which

the task is to find geodesics or minimal surfaces of a Riemannian space with an

induced metric derived from the image. A geodesic is a locally minimized path

between points. A minimal surface is a surface with zero mean curvature on

its entire domain. Asking for minimal surfaces is famous as Plateau’s problem.

Our main target is to find the border of a license plate by smoothing the image

and then finding border curves of minimal surfaces. This method can use in

implementing fast car tracking methods based on license plate detection and

recognition. To this end, we restrict the attention to gray-scale frames and

solve a special mean curvature flow for each frame to achieve a more smooth

image. Edge points as the pixels that cost function values change immediately,

are the extrema of the gradient magnitude. We consider the evolving planar

curves as the boundaries of minimal surfaces of the smoothed image and solve

the geodesic equations for them to find the boundaries.

Section 2 is devoted to a fast review of some Riemannian stuff that are needed

to solve the problem. In section 3 we discuss some literature and remarks about

image processing in the Riemannian context and explain how we solve a mean

curvature flow to smooth and then capture the boundaries of a plate in a better

image space.

2. Preliminaries

A Riemannian space (Mn, g) is an n-dimensional manifold M equipped with

a Riemannian metric g on the tangent bundle. Indeed, for any p ∈ M , g

induces a positive-definite inner product gp : TpM × TpM → R. Naturally

using this metric, we can derive a norm |.|g : TpM → R on any tangent space

by |v|g := gp(v, v). Also, it is provable that any paracompact manifold, has

a Riemannian metric. Moreover, any Riemannian metric induces a unique

affine connection named as Levi-Civita connection. Let ∇ is the Levi-Civita

connection induced by g such that

∇ ∂

∂xi

∂

∂xj
= Γk

ij
∂

∂xk

and

Γk
ij =

1

2
ghk

{
∂ighj + ∂jghi − ∂hgij

}
.
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for a curve γ : [a, b] ⊆ R → M , the length lγ and energy Eγ are defined as

lγ =

∫ b

a

∥γ̇(t)∥dt, Eγ =
1

2

∫ b

a

∥γ̇(t)∥2dt,

and moreover

l2γ ≤ 2(b− a)Eγ .

If a curve is a geodesic on M , then is satisfies in the following system of

ODE’s

d2γk(t)

dt2
+ Γk

ij(t)
dγi(t)

dt

dγj(t)

dt
= 0, (2.1)

where k ∈ {1, · · · , n} and γis are the components of γ. Now, Consider the

initial value problem through (2.1) and

γXp(0) = p,
dγXp

dt
(0) = Xp, Xp ∈ TpM,

to find a geodesic γXp : [0, 1] → M shooting from the point p by initial velocity

Xp. See [9] for an implementation of Adams-moulton algorithm to solve this

IVP in Matlab. The point γXp(1) is called the exponential of Xp and denoted

by expp(Xp). Moreover, expp(tXp) = γtXp(1) = γXp(t) and expp(0) = p. If M

is a compact and connected Riemannian manifold, then any two points in M

can join by a length minimizing geodesic [12]. Finding a geodesic between two

points in Riemannian manifolds is usually an uneasy numerical process that

sometimes deals with some heuristic tricks. See for example [3, 14]. For more

detailed discussion on Riemannian manifolds, one can see [12].

3. Setup and Modeling the Problem

Consider an embedding

X : Ω ⊂ R2 → M,

and a Riemannian metric g induced on n-dimensional manifold M . Then

X∗g = g(X)∂uX
i∂vX

j , i, j = 1, · · · , n,

as its pullback is a Riemannian metric on Ω where (u, v) is a coordinate system

on Ω and Xis are the components of X. This way, we can measure distance

on Ω using embedding coordinates instead its local coordinates. As a special

case, let the injection

X : Ω = [0, a]× [0, b] ⊆ R2 → R3,

defined by

(x, y) 7−→ (x, y, I(x, y)),

where I is a density distribution that maps each pixel to an integer number

between 0 and 255, to a be the desired embedding and g be the canonical
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Riemannian metric on R3. This injection is a model for gray-scale image as a

surface in R3 in image processing realm. So, the pullback of g on Ω reads

X∗g =

[
1 + I2x IxIy
IxIy 1 + I2y

]
. (3.1)

Applying (3.1) to the system (2.1), we have



α′′ +
GEx − 2FFx + FEy

2(EG− F 2)
(α′)2 +

GEy − FGx

EG− F 2
α′β′

+
2GFy −GGx − FGy

2(EG− F 2)
(β′)2 = 0,

β′′ +
2EFx − EEy − FEx

2(EG− F 2)
(α′)2 +

EGx − FEy

EG− F 2
α′β′

+
EGy − 2FFy + FGx

2(EG− F 2)
(β′)2 = 0,

where E = 1 + I2x, F = IxIy, G = 1 + I2y and we supposed that γ = (α, β)

with respect to the coordinate system (x, y).

For detailed discussion about why this metric is one of the suitable candi-

dates to study, see [6]. In this case, the mean curvature H and the normal to

the surface N are

H =
(1 + I2x)Iyy − 2IxIyIxy + (1 + I2y )Ixx

(detg)
3
2

, N =
1√
detg

−Iy
−Ix
1

 ,

that set the right hand side of the mean curvature flow

Xt = HN.

By solving the above PDE, we achieve to a family of evolving minimal surfaces

by which the points are moving along the normal vector with velocity propor-

tional to the mean curvature. In the discretisation framework for the image, we

choose a neighborhood for any pixel as the set of all unit 8 movement in a grid

surrounding the pixel. So, we can apply discrete numerical methods to solve

the above mean curvature flow and at each step, update the area of the closed

curves to reach the curve with as its boundary using geodesic equations. So,

the density of pixels updated to get a more smoothed image. The next step is

to find the borders of the smoothed image. We do this by solving the geodesic

equations for random initial values and update them in some iterations and

finally, save the answers with maximum area.
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(a) (b) (c) (d)

Figure 1. (a) A gray scaled license plate (b) Smoothed version of (a) (c) All

closed curves around minimal surfaces (d) Closed curve with maximum area

It is remarkable that, we use C programming language to implement the

codes and stb_image library to IO and data manipulation with images (https:

//github.com/nothings/stb). Also, we use some of the snippets of codes from

[11].
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