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Abstract. In this paper we characterize a minimal surface with Matsumoto

metric and prove a Bernstein-type theorem for surfaces which are graphs of

smooth functions. We also obtain the partial differential equation that charac-

terizes the minimal translation surfaces and show that plane is the only such

surface.
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1. Introduction

The study of minimal surfaces in Riemannian manifolds has been extensively

developed [10]. Many of the developed techniques have played key roles in

geometry and partial differential equations. The regularity theory for minimal

surfaces, Bernstein’s work maximum principle, and Lebesgue’s definition of

the integral that he developed in his thesis on the Plateau problem for minimal

surfaces are few examples [11]. However, minimal surfaces in Finsler spaces

have not been studied and developed at the same pace. The fundamental

contribution to the minimal surfaces of Finsler geometry was given by Shen

[15]. He introduced the notion of mean curvature for immersions into Finsler

manifolds and he established some of its properties. As in the Riemannian
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case, if the mean curvature is identically zero, then the immersion is said to be

minimal.

The Randers metric is the simplest class of non-Riemannian Finsler metric

which is defined as F = α+β, where α is a Riemannian metric and β is a one-

form. M. Souza and K. Tenenblat studied the rotational surfaces to become a

minimal surfaces in Minkowski space with Randers metric [16] and Souza et.

al obtained a Bernstein type theorem on a Randers space [17]. After that few

other authors studied the minimal surfaces on Randers spaces [4, 5, 6, 12]. N.

Cui and Y.B. Shen studied a special class of (α, β)- metric which satisfies the

following system of differential equations [3]

(ϕ− sϕ′)n−1 = 1 + p(s) + s2q(s) (1.1)

(ϕ− sϕ′)n−2ϕ′′ = q(s) (1.2)

where, p(s) and q(s) are arbitrary odd smooth functions. But again Randers

metric is the only metric they have found that satifies the above differential

equations.

Matsumoto slope metric is another class of interesting (α, β)-metric investi-

gated by M. Matsumoto on the motivation of a letter written by P. Finsler

himself in 1969 to Matsumoto. He considered the following problem: A person

is walking on a horizontal plane with some velocity, and the gravity is acting

perpendicularly on this plane. Now suppose the person walks with same ve-

locity on an inclined plane to the horizontal sea level. Now the question is

under the presence of gravitational forces, what should be the trajectory the

person should walk to reach a given destination in the shortest time? Based

on this, he has formulated the Slope principle [7, 9]. Matsumoto showed that

for a hiker walking the slope of a mountain under the presence of gravity, the

most efficient time minimizing paths are not the Riemannian geodesics, but

the geodesics of the slope metric F = α2

α−β .

The Bernstein’s theorem states that if a graph of a real valued smooth

function from R2 is minimal surface in R3, then it is a plane. In Section 4,

we study the minimal surface of graph of a smooth function and in Theorem

4.6, obtain a Bernstein-type Theorem under the Matsumoto slope metric. In

Section 5, we study translation surface in Minkowski Matsumoto slope metric

and in Theorem 5.1, prove that plane is the only such surface.

2. Preliminaries

Let M be an n-dimensional smooth manifold. TxM denotes the tangent

space of M at x. The tangent bundle of M is the disjoint union of tangent

spaces TM := ⊔x∈MTxM . We denote the elements of TM by (x, y) where

y ∈ TxM and TM0 := TM \ {0}.
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Definition 2.1. [2] A Finsler metric on M is a function F : TM → [0,∞)

satisfying the following conditions:

(i) F is smooth on TM0,

(ii) F is a positively 1-homogeneous on the fibers of tangent bundle TM ,

(iii) The Hessian of F 2

2 with element gij = 1
2

∂2F 2

∂yi∂yj is positive definite on

TM0.

The pair (M,F ) is called a Finsler space and gij is called the fundamental

tensor.

The explicit calculations of geometric objects in Finsler geometry are very

tedious and complicated. Therefore, Matsumoto introduced a special class of

Finsler metrics, namely, (α, β)-metric which has taken much attention in recent

years [8]. The (α, β)-metric is defined as, F = αϕ(βα ) where α is a Riemannian

metric, β is a one form and ϕ is a smooth function which satisfies in a differential

equation. This class of Finsler metrics contains many interesting subclass of

Finsler metrics such as Randers metrics, Matsumoto metrics, Kropina metrics

and etc. A Matsumoto metric on M is a Finsler metric F on TM is given

by F = α2

α−β , where α =
√

aijyiyj is a Riemannian metric and β = biy
i is a

one-form with 0 < b < 1/2, where b := ∥βx∥α.
For an n-dimensional Finsler manifold (Mn, F ), the Busemann-Hausdorff

volume form is defined as dVBH = σBH(x)dx, where

σBH(x) =
vol(Bn(1))

vol {(yi) ∈ TxM : F (x, y) < 1}
, (2.1)

Bn(1) is the Euclidean unit ball in Rn and vol is the Euclidean volume.

Proposition 2.2. [1] Let F = αϕ(s), s = β/α, be an (α, β)-metric on an

n-dimensional manifold M and b := ∥βx∥α. Then the Busemann-Hausdorff

volume form dVBH of the (α, β)-metric F is given by

dVBH =

π∫
0

sinn−2(t)dt

π∫
0

sinn−2(t)
ϕ(b cos(t))n dt

dVα

where, dVα =
√
det(aij)dx denotes the volume form of Riemannian metric α.

Let (M̃m, F̃ ) be a Finsler manifold, with local coordinates (x̃1, . . . , x̃m) and

φ : Mn → (M̃m, F̃ ) be an immersion. Then F̃ induces a Finsler metric on M ,

defined by

F (x, y) =
(
φ∗F̃

)
(x, y) = F̃ (φ(x), φ∗(y)) , ∀(x, y) ∈ TM. (2.2)

In the sequel we assume the following convention: the greek letters ϵ, η, γ, τ, . . .

are the indices ranging from 1 to n and the latin letters i, j, k, l, . . . are the

indices ranging from 1 to n+ 1.
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A Minkowski space is the vector space Rn equipped with a Minkowski norm

F whose indicatrix is strongly convex. Equivalently, we can say that F (x, y) de-

pends only on y ∈ Tx(Rn). The hypersurface Mn in the Minkowski Matsumoto

space Rn+1 given by the immersion φ : Mn → (Rn+1, F ), where F = α2

α−β , α

is the Euclidean metric, and β is a one-form with Euclidean norm 0 < b < 1/2.

Without loss of generality, we consider β = bdxn+1. Let Mn has local coordi-

nates x = (xϵ), ϵ = 1, ..., n, and φ(x) =
(
φi(xϵ)

)
∈ Rn+1, i = 1, . . . , n + 1, we

define

F(x, z) :=
vol(Bn)

vol(Dn
x )

, (2.3)

where

Dn
x =

{
(y1, y2, ..., yn) ∈ Rn : F (x, y) < 1

}
, y =

(
yϵziϵ

)
, z =

(
ziϵ
)
=

(
∂φi

∂xϵ

)
.

The mean curvature Hφ, for the immersion φ, along the vector v introduced

by Z. Shen [15] and is given by

Hφ(v) =
1

F

{
∂2F

∂ziϵ∂z
j
η

∂2φj

∂xϵ∂xη
+

∂2F
∂ziϵ∂x̃

j

∂φj

∂xϵ
− ∂F

∂x̃i

}
vi.

Here v = (vi) is a vector field over Rn+1. Hφ(v) depends linearly on v and the

mean curvature vanishes on φ∗(TM). Since, (Rn+1, F ) is a Minkowski space,

F = F (y). Hence, the expression of the mean curvature reduces to

Hφ(v) =
1

F

{
∂2F

∂ziϵ∂z
j
η

∂2φ

∂xϵ∂xη

}
vi. (2.4)

The immersion φ is said to be minimal when Hφ = 0.

In this paper, we consider an immersed surface in three dimensional Minkowski

space. Using the definition of pullback metric given in (2.2), we show that if

F̃ is a Matsumoto metric, then the induced pullback metric on the surface is

again a Matsumoto metric.

Proposition 2.3. Let φ : M2 → (R3, F̃ = α̃2

α̃−β̃
), where α̃ is the Euclidean

metric and β̃ = bdx3, (0 < b < 1/2) be an immersion in a Matsumoto space

with local coordinates (φi(xϵ)). Then the pull back metric defined in (2.2) is a

Matsumoto metric.

Proof. Let φ
(
x1, x2

)
=
(
φ1(x1, x2), φ2(x1, x2), φ3(x1, x2)

)
be an immersion.

Then, for any tangent vector v ∈ TM

(φ∗(F̃ ))(v) = F̃ (φ∗v) =
δij

∂φi

∂xϵ
∂φj

∂xδ v
ϵvδ√

δij
∂φi

∂xϵ
∂φj

∂xδ vϵvδ − b∂φ
j

∂xη vη
=

Aϵδv
ϵvδ√

Aϵδvϵvδ − bz3ηv
η
,
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where

A = (Aτγ) =

(
3∑

i=1

ziτz
i
γ

)
. (2.5)

Hence, F = φ∗(F̃ ) is again a Matsumoto metric where, α2 = Aϵδv
ϵvδ and

β = bz3ηv
η. □

3. The Partial Differential Equation of Minimal Surfaces in Mat-

sumoto Spaces

In this section we obtain the volume form of Matsumoto metric and with the

help of that for any immersion φ : M2 → (R3, Fb) we obtain the characteristic

differential equation for which φ is minimal.

Theorem 3.1. Let φ : M2 → (R3, Fb) be an immersion in a Matsumoto space

with local coordinates (φj(x)). Then φ is minimal if and only if

∂2φj

∂xϵ∂xη
vi

[
2C2 + 3E

(2C2 + E)2
∂2C2

∂ziϵ∂z
j
η

− 2C2

(2C2 + E)2
∂2E

∂ziϵ∂z
j
η

−2(4C4 + 12C2E − 12C3 − 3E2)

(2C2 + E)3
∂C

∂ziϵ

∂C

∂zjη
+

4C2

(2C2 + E)3
∂E

∂ziϵ

∂E

∂zjη

+
4C3 − 6CE

(2C2 + E)3

(
∂C

∂ziϵ

∂E

∂zjη
+

∂E

∂ziϵ

∂C

∂zjη

)]
= 0 (3.1)

where

C =
√
det(A), E = b2

3∑
k=1

(−1)γ+τzkγ̄z
k
τ̄ z

3
γz

3
τ .

Here the notation bar for any Greek letters ranging from 1 to 2 is defined by

τ̄ = δτ2 + 2δτ1.

Proof. For Matsumoto surface we have ϕ(s) = 1
1−s and n = 2. Therefore, we

have

dVBH =

π∫
0

dt

π∫
0

(1− b′ cos t)2dt

√
det(A)dx =

2

2 + b′2

√
det(A)dx. (3.2)

Here, b′2 = b2Aϵδz3ϵ z
3
δ is the norm of β with respect to the pullback Matsumoto

metric F . Therefore, using (2.3) and Proposition 2.3 in (3.2) we have

F(x, z) =
2C3

2C2 + E
. (3.3)

It should be noted that

∂2C2

∂ziϵ∂z
j
η

=
∂

∂zjη

(
2C

∂C

∂ziϵ

)
= 2

∂C

∂ziϵ

∂C

∂zjη
+ 2C

∂2C

∂ziϵ∂z
j
η

. (3.4)
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Now differentiating (3.3) twice first with respect to ziϵ and then with respect

to zjη and using (3.4) we get

∂2F
∂ziϵ∂z

j
η

=
2C2 + 3E

(2C2 + E)2
∂2C2

∂ziϵ∂z
j
η

− 2C2

(2C2 + E)2
∂2E

∂ziϵ∂z
j
η

−2(4C4 + 12C2E − 12C3 − 3E2)

(2C2 + E)3
∂C

∂ziϵ

∂C

∂zjη
+

4C2

(2C2 + E)3
∂E

∂ziϵ

∂E

∂zjη

+
4C3 − 6CE

(2C2 + E)3

(
∂C

∂ziϵ

∂E

∂zjη
+

∂E

∂ziϵ

∂C

∂zjη

) (3.5)

The Matsumoto metric has vanishing mean curvature if and only if

∂2F
∂ziϵ∂z

j
η

∂2φj

∂xϵ∂xη
vi = 0. (3.6)

Now using (3.5) in (3.6) we obtain the proof of the theorem. □

4. The Characterization of Minimal Surfaces which are the Graph of

a Function

In this section we study the graph of a function M2 in Matsumoto space

(R3, Fb), where Fb =
α̃2

α̃−β̃
is a Matsumoto metric on R3, with α̃ is the Euclidean

metric and β̃ = bdx3 is a one-form. Here we consider the immersion φ : U ⊂
R2 → (R3, Fb) given by φ(x1, x2) = (x1, x2, f(x1, x2)).

Theorem 4.1. An immersion φ : U ⊂ R2 → (R3, Fb) given by

φ(x1, x2) = (x1, x2, f(x1, x2))

is minimal, if and only if, f satisfies∑
ϵ,η=1,2

[
Tb(Tb − 2b2)

(
δϵη −

fxϵfxη

W 2

)
+ 4b2(Tb + 4b2)

fxϵfxη

W 2

]
fxϵxη = 0, (4.1)

where

W 2 = 1 + f2
x1 + f2

x2 , Tb = 2W 2 + b2(W 2 − 1).

Proof. The mean curvature vanishes on tangent vectors of the immersion φ.

Therefore, we need to consider a vector field v such that the set {v, φx1 , φx2}
is linearly independent. Therefore, we consider v = φx1 × φx2 . Then v =(
v1, v2, v3

)
= (−fx1 ,−fx2 , 1). Using (2.5), we have the followings:

A =

(
1 + f2

x1 fx1fx2

fx1fx2 1 + f2
x2

)
, C =

√
detA = W, E = b2

(
W 2 − 1

)
. (4.2)

By some calculations we can have

∂C

∂ziϵ
vi = 0,

∂E

∂ziϵ
vi = 2b2(δϵ1fx1 + δϵ2fx2), (4.3)
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∂C

∂zjη

∂2φj

∂xϵ∂xη
vi =

fx1fxϵx1 + fx2fxϵx2

W
, (4.4)

∂E

∂zjη

∂2φj

∂xϵ∂xη
= 2b2(fx1fxϵx1 + fx2fxϵx2), (4.5)

∂2E

∂ziϵ∂z
j
η

∂2φj

∂xϵ∂xη
vi = 2b2

[
(1 + f2

x2)fx1x1 − 2fx1fx2fx1x2 + (1 + f2
x1)fx2x2

]
,

(4.6)

1

2

∂2C2

∂ziϵ∂z
j
η

∂2φj

∂xϵ∂xη
vi =

[
(1 + f2

x2)fx1x1 − 2fx1fx2fx1x2 + (1 + f2
x1)fx2x2

]
. (4.7)

Using (4.3) in (3.1) we have

∂2φj

∂xϵ∂xη
vi

[
∂2C2

∂ziϵ∂z
j
η

(2C2 + 3E)(2C2 + E)− ∂2E

∂ziϵ∂z
j
η

2C2(2C2 + E)

+

{
∂E

∂ziϵ

∂C

∂zjη

(
4C3 − 6CE

)
+ 4C2 ∂E

∂ziϵ

∂E

∂zjη

}]
= 0. (4.8)

Let Tb = 2C2 + E. Then we have the followings:

Tb = 2b2 + b2(W 2 − 1), 2C2 + 3E = 2W 2 + 3b2(W 2 − 1),(
4C3 − 6CE

)
= 2W

{
Tb − 4b2(W 2 − 1)

}
.

(4.9)

Putting all these values in (4.8) we get

Tb(Tb − 2b2)
[
(1 + f2

x2)fx1x1 − 2fx1fx2fx1x2 + (1 + f2
x1)fx2x2

]
+4b2(Tb + 4b2)

[
f2
x1fx1x1 + 2fx1fx2fx1x2 + f2

x2fx2x2

]
= 0.

(4.10)

The above equation is equivalent to (4.1). Hence, we complete the proof. □

Theorem 4.2. An immersion φ : U ⊂ R2 → (R3, Fb) given by

φ(x1, x2) = (x1, x2, f(x1, x2))

is minimal, if and only if, f satisfies∑
ϵ,η=1,2

[
Sb(Sb − 2b2w2)

(
δϵη −

fxϵfxη

W 2

)

+4b2(Sb + 4b2w2)

(
kϵ +

fxϵ

W 2

)(
kη +

fxη

W 2

)]
fxϵxη = 0 (4.11)

where ki are real numbers such that
3∑

i=1

k2i = 1 and

W 2 = 1+f2
x1 +f2

x2 , Sb = b2+(2+b2)W 2, w = −k1fx1 −k2fx2 +k3. (4.12)
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Proof. The proof of this theorem is similar to the previous theorem. Let us

consider the immersion φ is a graph of a function over an open subset of a

plane of V 3. Then φ can be written in the form

φ(x1, x2) =
(
x1, x2, f(x1, x2)

)
(mij) , (4.13)

where (mij) is a 3× 3 orthogonal matrix, (x1, x2) ∈ U ⊂ R2 and the surface is

a graph over the plane m31x+m32y +m33z = 0.

We now consider the vector field v = (v1, v2, v3) which is linearly indepen-

dent with φx1 and φx2 . Hence we consider v = φx1 × φx2 . Therefore,

vi = −fx1m1i − fx2m2i +m3i,

Now note that

ziη =
∂φi

∂xη
= mηi + fxηm3i,

∂2φi

∂xϵ∂xη

= fxϵxηm3i. (4.14)

Further, for all i = 1, 2, 3 and η, γ, ϵ = 1, 2, we have,

3∑
i=1

ziηv
i = 0,

3∑
i=1

vim3i = 1,

3∑
i=1

ziηm3i = fxη ,

3∑
i=1

ziγ
∂2φi

∂xϵ∂xη
= fxγfxϵxη .

(4.15)

Here the values of A and C are as given in (4.2). And E = b2(W 2 − w2),

w = v3. Let m3i = ki. Therefore, as obtained in Theorem 4.1 similarly we

obtain the followings:

∂C

∂ziϵ
vi = 0,

∂E

∂ziϵ
vi = 2b2

(
z3ϵAϵ̄ϵ̄ − z3ϵ̄Aϵϵ̄

)
w, ∀ϵ (4.16)

∂C

∂zjη

∂2φj

∂xϵ∂xη
vi =

fx1fxϵx1 + fx2fxϵx2

W
, ∀ϵ (4.17)

∂E

∂zjη

∂2φj

∂xϵ∂xη
= 2b2 [(fx1 + k1w) fxϵx1 + (fx2 + k2w) fxϵx2 ] , ∀ϵ (4.18)

∂2E

∂ziϵ∂z
j
η

∂2φj

∂xϵ∂xη
vi = 2b2

[{
1 + f2

x2 − k1
(
k1W

2 + fx1w
)}

fx1x1

−
{(

1 + k23
)
fx1fx2 + k1k2W

2 + k1k3fx2 + k2k3fx1 + k1k2
}
fx1x2

+
{
1 + f2

x1 − k2
(
k2W

2 + fx2w
)}

fx2x2

]
, (4.19)

1

2

∂2C2

∂ziϵ∂z
j
η

∂2φj

∂xϵ∂xη
vi =

[
(1 + f2

x1)fx2x2 − 2fx1fx2fx1x2 + (1 + f2
x2)fx1x1

]
.

(4.20)
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Using (4.16) in (3.1) we have

∂2φj

∂xϵ∂xη
vi

[
∂2C2

∂ziϵ∂z
j
η

(2C2 + 3E)(2C2 + E)− ∂2E

∂ziϵ∂z
j
η

2C2(2C2 + E)

+

{
∂E

∂ziϵ

∂C

∂zjη

(
4C3 − 6CE

)
+ 4C2 ∂E

∂ziϵ

∂E

∂zjη

}]
= 0. (4.21)

Let Sb = 2C2 + E. Then,

Sb = 2b2 + b2(W 2 − w2), 2C2 + 3E = 2W 2 + 3b2(W 2 − w2),(
4C3 − 6CE

)
= 2W

{
Sb − 4b2(W 2 − w2)

}
.

(4.22)

Putting all these values in (4.21) we get (4.11). □

Remark 4.3. One can see that when k1 = k2 = 0 and k3 = 1, then equation

(4.8) reduces to (4.1).

Definition 4.4. [13] A differential equation is said to be an elliptic equation

of mean curvature type on a domain Ω ⊂ R2 if∑
ϵ,η=1,2

aϵη(x, f,∇f)fxϵxη = 0 (4.23)

where aϵη, ϵ, η = 1, 2 are given real-valued functions on Ω × R × R2, x ∈ Ω,

f : Ω → R with

|ξ|2 − (p · ξ)2

1 + |p|2
≤

∑
ϵ,η=1,2

aϵη(x, u, p)ξϵξη ≤ (1 + C)
[
|ξ|2 − (p · ξ)2

1 + |p|2

]
(4.24)

for all u ∈ R, p ∈ R2 and ξ ∈ R2 \ {0}.

Theorem 4.5. Let φ : U ⊂ R2 → (V 3, Fb) be an immersion which is the

graph of a function f(x1, x2) over a plane. Then φ is minimal, if and only if,

f satisfies the elliptic differential equation, of mean curvature type, given by∑
ϵ,η=1,2

aϵη(x, f,∇f)fxϵxη = 0 (4.25)

where,

aϵη = δϵη−
fxϵfxη

W 2
+RbW

2+

(
kϵ +

fxϵ

W 2

)(
kη +

fxη

W 2

)
, Rb =

4b2(Sb + 4b2w2)

Sb(Sb − 2b2w2)
.

(4.26)

Proof. In Theorem 4.2, we already prove that φ is minimal if and only if it

satisfies (4.11). Since for a Matsumoto metric 0 < b < 1/2, therefore, we have

from the definition, Sb > 0. And also

(Sb−2b2w2) = b2+(2+b2)W 2−2b2w2 = b2+(2−b2)W 2+2b2(W 2−w2) (4.27)

Now,

W 2 − w2 = (k2fx1 − k1fx2)2 + (k1 + k3fx1)2 + (k2 + k3fx2)2 > 0. (4.28)
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Since, 0 < b < 1/2, using (4.28) in (4.27), we have

(Sb − 2b2w2) > 0.

Now dividing both sides of (4.11) by Sb(Sb − 2b2w2), we get (4.25).

Let us consider ξ ∈ R2 \ {0}, x, t ∈ R2 and u ∈ R and we define

hϵη(u) = δϵη −
tϵtη

W 2(u)
.

Hence, we have,
2∑

ϵ,η=1

hϵη(t)ξiξj =
|ξ|2

W 2
(1 + |t|2 sin2 θ), (4.29)

where, θ is the angle function between t and ξ. We also have from

2∑
ϵ,η=1

aϵη(x, u, t)ξϵξη =
2∑

ϵη=1

hϵη(t)ξϵξη+RbW
2
[
(k1, k2) · ξ +

w

W 2
t · ξ
]2

, (4.30)

where · represents the Euclidean inner product.

Since Rb > 0, for all ξ ∈ R2 \ {0}, from (4.29) we have,

2∑
ϵ,η=1

aϵη(x, u, t)ξϵξη ≥
2∑

ϵ,η=1

hϵη(t)ξϵξη ≥ |ξ|2

W 2
> 0. (4.31)

Hence, (4.25) is an elliptic equation. Now we prove that it is a differential

equation of mean curvature type for which we need to show that there exists a

constant C such that, for all

2∑
ϵ,η=1

hϵη(x, u, t)ξϵξη ≤
2∑

ϵ,η=1

aϵη(x, u, t)ξϵξη ≤ (1 + C)
2∑

ϵ,η=1

hϵη(x, u, t)ξϵξη.

(4.32)

The first inequality is immediate from (4.31). To prove the second inequality

we need to show that

RbW
2
[
(k1, k2).ξ +

w

W 2
t.ξ
]2

≤ C
2∑

ϵ,η=1

hϵη(x, u, t)ξϵξη, (4.33)

where, w = −k1t1 − k2t2 + k3.

From (4.29) we have,

W 2
[
(k1, k2).ξ +

w

W 2
t.ξ
]2

=

[
W 2|(k1, k2)| cos γ + w|t| cos θ

]2
1 + |t|2 sin2 θ

2∑
ϵ,η=1

hϵη(x, u, t)ξϵξη,

where γ is the angle between (k1, k2) and ξ. Hence, we need to show that

Rb

[
W 2|(k1, k2)| cos γ + w|t| cos θ

]2
1 + |t|2 sin2 θ

≤ C. (4.34)
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It can be seen that W 2 ≥ 1. When W 2 = 1, then, t = 0. In that case, we have

0 ≤ Rb [|(k1, k2)| cos γ]2 ≤ Rb(0)(k
2
1 + k22).

Therefore, taking C = Rb(0)(k
2
1 + k22) we prove the inequality.

Now suppose W 2 > 1 and sin θ = 0. in that case t ̸= 0 and the vectors t

and ξ are parallel to each other. Hence,[
W 2|(k1, k2)| cos γ + w|t| cos θ

]2
= [|(k1, k2)| cos γ + k3|t|cosθ]2 . (4.35)

Equation (4.35) implies that Rb
[W 2|(k1,k2)| cos γ+w|t| cos θ]

2

1+|t|2 sin2 θ
is a rational function

of |t| whose numerator is of degree less than or equal to 4, and denominator is

of degree 4 and hence it is a bounded function as |t| (or, equivalently W ) tends

to infinity.

Now, suppose W 2 > 1 and sin θ ̸= 0, then t ̸= 0 and the vectors t and ξ

are not parallel. Therefore, Rb
[W 2|(k1,k2)| cos γ+w|t| cos θ]

2

1+|t|2 sin2 θ
is a rational function

of |t| whose numerator is of degree less than or equal to 6, and denominator is

of degree 6. Therefore, it is a bounded function when |t| (or equivalently W)

tends to infinity. Hence, we prove the inequality (4.34). And this proves the

theorem. □

Now from the theorem proved by L. Simon (Theorem 4.1 of [14]) and The-

orem 4.5 we conclude that

Theorem 4.6. A minimal surface in a Matsumoto space (R3, Fb), which is a

graph of a function defined on R2, is a plane.

5. The Characterization of Minimal Surfaces of Translation Surfaces

In this section, we study the minimal translation surface M2 in Matsumoto

space (R3, Fb), where Fb = α̃2

α̃−β̃
is a Matsumoto metric, where α̃ is the Eu-

clidean metric and β̃ = bdx3 is a one-form. Here we consider the immersion

φ : U ⊂ R2 → (R3, Fb) given by φ(x1, x2) = (x1, x2, f(x1) + g(x2)).

Let us consider the following immersion:

φ(x1, x2) = (φ1, φ2, φ3) =
(
x1, x2, f(x1) + g(x2)

)
Therefore, from (2.5) we get

A =

(
1 + f2

x1 fx1gx2

fx1gx2 1 + g2x2

)
, C =

√
1 + f2

x1 + g2x2 and E = b2(f2
x1 + g2x2).

(5.1)

Here we choose v = φx1 ×φx2 . Then v = (v1, v2, v3) = (−fx1 ,−gx2 , 1). Hence,

vi = −δi1fx1 − δi2gx2 + δi3, 1 ≤ i ≤ 3. By some calculations we can have

∂C

∂ziϵ
vi = 0,

∂E

∂ziϵ
vi = 2b2(δϵ1fx1 + δϵ2gx2), (5.2)
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∂C

∂zjη

∂2φj

∂xϵ∂xη
=

δϵ1fx1fx1x1 + δϵ2gx2gx2x2

C
, (5.3)

∂E

∂zjη

∂2φj

∂xϵ∂xη
= 2b2(δϵ1fx1fx1x1 + δϵ2gx2gx2x2), (5.4)

∂2E

∂ziϵ∂z
j
η

∂2φj

∂xϵ∂xη
vi = 2b2

[
(1 + g2x2x2)fx1x1 + (1 + f2

x1x1)gx2x2

]
, (5.5)

∂2C2

∂ziϵ∂z
j
η

∂2φj

∂xϵ∂xη
vi = 2

[
(1 + g2x2x2)fx1x1 + (1 + f2

x1x1)gx2x2

]
. (5.6)

Using (5.2) in (3.1) we have

∂2φj

∂xϵ∂xη
vi

[
∂2C2

∂ziϵ∂z
j
η

(2C2 + 3E)(2C2 + E)− ∂2E

∂ziϵ∂z
j
η

2C2(2C2 + E)

+

{
∂E

∂ziϵ

∂C

∂zjη

(
4C3 − 6CE

)
+ 4C2 ∂E

∂ziϵ

∂E

∂zjη

}]
= 0. (5.7)

Therefore, using (5.2) to (5.6) in (5.7) we obtain

fx1x1(1 + g2x2)
[
2 + (2 + b2)(f2

x1 + g2x2)
] [
2(1− b2)(2 + b2)(f2

x1 + g2x2)
]

+gx2x2(1 + f2
x1)
[
2 + (2 + b2)(f2

x1 + g2x2)
] [
2(1− b2)(2 + b2)(f2

x1 + g2x2)
]
= 0,

(5.8)

which can be written as λfx1x1 + µgx2x2 = 0, where,

λ = (1 + g2x2)
[
2 + (2 + b2)(f2

x1 + g2x2)
] [
2(1− b2)(2 + b2)(f2

x1 + g2x2)
]

+6b2f2
x1

{
2 + (2− b2)(f2

x1 + g2x2)
} (5.9)

and

µ = (1 + f2
x1)
[
2 + (2 + b2)(f2

x1 + g2x2)
] [
2(1− b2)(2 + b2)(f2

x1 + g2x2)
]

+6b2g2x2

{
2 + (2− b2)(f2

x1 + g2x2)
}
.

(5.10)

Now we want to solve the differential equation (5.8). Let

r = f2
x1 , s = g2x2 .

Then

fx1x1 =
rf
2
, gx2x2 =

sg
2
. (5.11)

Then (5.9) and (5.10) become

λ = (1 + s)
[
2 + (2 + b2)(r + s)

] [
2(1− b2)(2 + b2)(r + s)

]
+6b2r

{
2 + (2− b2)(r + s)

} (5.12)

and

µ = (1 + r)
[
2 + (2 + b2)(r + s)

] [
2(1− b2)(2 + b2)(r + s)

]
+6b2s

{
2 + (2− b2)(r + s)

}
.

(5.13)

And (5.8) becomes

rfλ+ sgµ = 0. (5.14)
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Therefore, we have two cases:

Case 1: If rf = 0 or, sg = 0, then r and s are constant functions. And

hence f and g are linear functions. Therefore, M2 is a piece of plane in (R3, Fb).

Case 2: Let rf ̸= 0 and sg ̸= 0. Then we have, λ ̸= 0 and µ ̸= 0. Let

κ =
rf
µ

= −sg
λ
.

It implies that

(rf )g = µgκ+ µκg = 0 and (sg)f = λfκ+ λκf = 0.

Hence, we have,

log κf =
κf

κ
= −λf

λ
and log κg =

κg

κ
= −µg

µ
. (5.15)

Since, (log κf )g = (log κg)f , we have(
λf

λ

)
g

=

(
µg

µ

)
f

.

We can easily observe that, rg = (rf )g = 0 and sf = (sg)f = 0. Therefore, we

have, (
λf

λ

)
g

=

(
λr

λ

)
s

rfsg, and

(
µg

µ

)
f

=

(
µs

µ

)
r

rfsg. (5.16)

Therefore, we get (
λr

λ

)
s

=

(
µs

µ

)
r

,

that is, (
log

λ

µ

)
rs

= 0.

Let p = r + s and q = r − s. Then we have,

λ = K(p)− L(p)q, µ = K(p) + L(p)q,

where,

K(p) = 4(1−b2)+
p

2
(20++8b2−4b4)+

p2

2
(16+20b2−6b4)+

p3

2
(2+b2)2 (5.17)

and

L(p) = 2(1− 4b2) +
p

2
(8− 12b2 + 4b4) +

p2

2
(2 + b2)2. (5.18)

Then it follows that(
log

λ

µ

)
rs

=

(
log

λ

µ

)
pp

−
(
log

λ

µ

)
qq

= 0. (5.19)
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Now substitute the values of λ and µ in (5.19) we get

q3
(
KppL

3 −KL2Lpp − 2KpLpL
2 + 2KLL2

p

)
+q
(
−KppK

2L+K3Lpp − 2KpK
2Lp + 2K2

pKL− 2KL3
)
= 0.

(5.20)

Since, q is an arbitrary function we get

KppL
3 −KL2Lpp − 2KpLpL

2 + 2KLL2
p = 0 (5.21)

and

−KppK
2L+K3Lpp − 2KpK

2Lp + 2K2
pKL− 2KL3 = 0. (5.22)

From (5.21) and (5.22) we can obtain easily that[(
K

L

)
p

]2
= 1. (5.23)

Again from (5.17) and (5.18) we have

K

L
= p+

8 + 32b2 − 10b4

(2 + b2)2
+

4b4

T

(
132− 60b2 + 9b4

(2 + b2)2
p+

2(66− 21b2)

(2 + b2)2

)
, (5.24)

where

T = (4− 16b2) + p(8− 12b2 + 4b4) + p2(2 + b2)2.

Now differentiating (5.24) with respect to p we get(
K

L

)
p

= 1− 4b4

T ′

(
9b4 − 102b2 + 264

(b2 + 2)2
+ (94b4 − 12b2 + 8 + 2(b2 + 2)2p)

)
,

(5.25)

where, T ′ = (−16b2 + 4 + (94b4 − 12b2 + 8)p+ (b2 + 2)2p2)2.

Now, (5.23) will true if and only if b = 0. Hence, we obtain the following

result.

Theorem 5.1. A minimal surface in a Matsumoto space (R3, Fb), which is the

translation surface defined on R2, is a plane.
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