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Abstract. Let F be a (reversible) Finsler metric on a Riemannian space (M,α)

of positive (or negative) sectional curvature. Suppose that the Ricci curvature

of F is horizontally constant along Finslerian geodesics. Then we show that F

is a Ricci-quadratic Finsler metric.
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1. Introduction

An (α, β)-metric F is a Finsler metric on the background Riemannian man-

ifold (M,α). Therefore, on is dealing with two metrics F and α within the re-

lated computations. This bi-metric issue may be crucial for applied disciplines

and there may be considered several types of bi-metric spaces. For example,

the anisotropy property can be detected using radiation in the background

Riemannian space. One may assume that the background Riemannian space

has some specific geometric properties; Bi-metric theories in General Relativity

are of such various types and contain both the usual metric and a metric of

constant curvature, and may contain other scalar or vector fields, cf. [4].

Given a Finsler metric F = F (x, y), the locally minimizing curves are char-

acterized by the system of differential equations

c̈i(t) + 2Gi
(
c(t), ċ(t)

)
= 0,
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where the local functions Gi = Gi(x, y) are called the spray coefficients. For

a Riemannian metric F =
√

gij(x)yiyj , the spray coefficients are quadratic in

y ∈ TxM . There are non-Riemannian metrics whose spray coefficients still have

this quadratic property. Finsler metrics with this property are called Berwald

metrics. In this case, we have

Gi =
1

2
Γi

jk(x)y
jyk.

The Chern connection (as well as the Berwald connection) of any Berwald

metric F is the Levi-Civita connection of a Riemannian metric α and the

Riemann and the Ricci curvatures of F are eventually those of the Riemannian

metric α. Hence every Berwald space deals with a bi-metrics theory.

The notion of Riemann curvature for Riemann metrics can be extend to

Finsler metrics. For y ∈ TxM0, the Riemann curvature Ry : TxM → TxM is

defined by Ry(u) = Ri
k(y)u

k ∂
∂xi where

Ri
k(y) := 2

∂Gi

∂xk
− ∂2Gi

∂xj∂yk
yj + 2Gj ∂2Gi

∂yj∂yk
− ∂Gi

∂yj
∂Gj

∂yk
. (1.1)

The Ricci curvature on an n-manifold M is defined by

Ric =
n∑

k=1

Rk
k(x, y).

By definition, the Ricci curvature is a positively homogeneous function of degree

two in y ∈ TM . But it is not quadratic in y ∈ TxM , in general. From Eq.(1.1),

one can see that if F is a Berwald metric then the Ricci curvature is quadratic

in y ∈ TxM . Finsler metrics with such curvature property are called Ricci-

quadratic metrics [9]. The key idea for Finsler metrics with positive quadratic

Ricci curvature is that thereby the Ricci curvature

Ric(x, y) = hij(x)y
iyj

defines a natural Riemannian metric on M given by h = hij(x)dx
idxj .

The Randers metrics are the most popular Finsler metrics appearing in

many areas of Differential geometry and Physics and simply accessible by a

Riemannian metrics α =
√
aij(x)yiyj and a 1-form β = bi(x)y

i on a manifold

M . It has been in the center of researches devoted in unified field theory for

long years after G. Randers applied it in [10]. In [9], Li-Shen characterize

Ricci-quadratic Randers metrics.

Let us denote the Levi-Civita connection of α by ∇̃ and denote the horizontal

and vertical covariant derivations with respect to the horizontal vector δ̃
˜δxi

and

the vertical vector ∂
∂yi associated to ∇̃ by “|i” and “;i” respectively. Let

Ricij :=
1

2
Ric;i;j =

1

2

∂2Ric

∂yi∂yj
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where Ric is the Ricci tensor of F and “|0 := |sy
s ” is denote the horizontal

covariant derivation on geodesics of Riemannian metric α.

In this paper we prove the following result:

Theorem 1.1. Let F be a (reversible) Finsler metric on a background Rie-

mannian space (M,α) of positive (or negative) sectional curvature. Suppose

that Ricci curvature satisfies following

Ricij|0 = 0.

Then F is Ricci-quadratic.

There are many Finsler metrics whose Riemann curvature in every direction

is quadratic. A Finsler metric F is said to be R-quadratic if Ry is quadratic in

y ∈ TxM at each point x ∈ M . Indeed a Finsler metric is R-quadratic if and

only if the h-curvature of Berwald connection depends on position only in the

sense of Bácsó-Matsumoto [3]. We have Ri
k = Ri

j kl(x, y)y
jyl. Therefore Ri

k is

quadratic in y ∈ TxM if and only if Ri
j kl are functions of position alone. In

this case, we have

Ri
k = Ri

j kl(x)y
jyl

It is remarkable that, the notion of R-quadratic Finsler metrics was introduced

by Shen, which can be considered as a generalization of Berwald metrics and

R-flat metrics [20]. He proved that every compact R-quadratic Finsler metric

is a Landsberg metric. In [16], Najafi-Bidabad-Tayebi showed that every R-

quadratic Finsler metric satisfies H = 0.

A Finsler metric F is said to be Ricci-quadratic if Ricci is quadratic in

y ∈ TxM at each point x ∈ M . In this paper, we prove the following.

Theorem 1.2. Every Ricci-quadratic Finsler manifold (M,F ) is of vanishing

H-curvature.

2. Preliminaries

Let M be a n-dimensional C∞ manifold. Denote by TxM the tangent space

at x ∈ M , by TM = ∪x∈MTxM the tangent bundle of M and by TM0 :=

TM \ {0} the slit tangent bundle.

A Finsler metric onM is a function F : TM → [0,∞) which has the following

properties:

(i) F is C∞ on TM0 := TM \ {0};
(ii) F is positively 1-homogeneous on the fibers of tangent bundle TM ;

(iii) for each y ∈ TxM , the following quadratic form gy : TxM × TxM → R on

TxM is positive definite,

gy(u, v) :=
1

2

[
F 2(y + su+ tv)

]
|s,t=0, u, v ∈ TxM.
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Let x ∈ M and Fx := F |TxM . To measure the non-Euclidean feature of Fx,

define Cy : TxM × TxM × TxM → R by Cy(u, v, w) := Cijk(y)u
ivjwk where

Cijk(y) :=
1

4

∂3F 2

∂yi∂yj∂yk
(y)

The family C := {Cy}y∈TM0 is called the Cartan torsion. It is well known that

C=0 if and only if F is Riemannian.

The horizontal covariant derivatives of C along geodesics give rise to the

Landsberg curvature Ly : TxM × TxM × TxM → R defined by

Ly(u, v, w) := Lijk(y)u
ivjwk,

where u = ui ∂
∂xi |x, v = vi ∂

∂xi |x, w = wi ∂
∂xi |x and Lijk := Cijk|sy

s. The family

L := {Ly}y∈TM0 is called the Landsberg curvature. A Finsler metric is called a

Landsberg metric if L=0 [18].

Given a Finsler manifold (M,F ), then a global vector field G is induced by

F on TM0, which in a standard coordinate (xi, yi) for TM0 is given by

G = yi
∂

∂xi
− 2Gi ∂

∂yi
,

where Gi = Gi(x, y) are local functions on TM given by

Gi :=
1

4
gil

{ ∂2[F 2]

∂xk∂yl
yk − ∂[F 2]

∂xl

}
, y ∈ TxM.

G is called the associated spray to (M,F ).

For y ∈ TxM0, define By : TxM ⊗ TxM ⊗ TxM → TxM and Ey : TxM ⊗
TxM → R by

By(u, v, w) := Bi
jkl(y)u

jvkwl ∂

∂xi
|x, Ey(u, v) := Ejk(y)u

jvk,

where

Bi
jkl(y) :=

∂3Gi

∂yj∂yk∂yl
(y), Ejk(y) :=

1

2
Bm

jkm(y).

B and E are called the Berwald curvature and mean Berwald curvature re-

spectively. A Finsler metric F is called a Berwald metric and weakly Berwald

metric if B = 0 and E = 0, respectively [19].

The quantity Hy = Hijdx
i ⊗ dxj is defined as the covariant derivative of E

along geodesics. More precisely

Hij := Eij|mym.

For Hij , we get Hijy
i = 0 (see [1], [17] and [25]).
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The Busemann-Hausdorff volume form dVF = σF (x)dx
1 · · · dxn on any

Finsler space (M,F ) is defined by

σF (x) :=
Vol(Bn(1))

Vol
{
(yi) ∈ Rn | F (yi ∂

∂xi |x) < 1
} .

Assume that

g = det
(
gij(x, y)

)
and define

τ(x, y) := ln

√
g

σF (x)
.

Then, τ = τ(x, y) is a scalar function on slit tangent bundle TM0, which is

called the distortion [19].

For a vector y ∈ TxM , let c(t),−ϵ < t < ϵ, denote the geodesic with c(0) = x

and ċ(0) = y. The function

S(y) :=
d

dt

[
τ(ċ(t))

]
|t=0

is called the S-curvature with respect to the Busemann-Hausdorff volume form.

A Finsler space is said to be of isotropic S-curvature if there is a function

c = c(x) defined on M such that

S = (n+ 1)c(x)F.

It is called a Finsler space of constant S-curvature once c is a constant. Every

Berwald space is of vanishing S-curvature [19]. Notice that, S-curvature are

in fact non-Riemannian quantities, namely, they vanish for the Riemannian

metrics.

Take an arbitrary plane P ⊂ TxM (flag) and a non-zero vector y ∈ P (flag

pole), the flag curvature K(P, y) is defined by

K(P, y) :=
gy(Ry(v), v)

gy(y, y)gy(v, v)− gy(v, y)gy(v, y)
.

We say that a Finsler metric F is of scalar curvature if for any y ∈ TxM , the

flag curvature K = K(x, y) is a scalar function on TM0. If K = constant, then

F is said to be of constant flag curvature. The important of the quantity H

lies in the following well-known theorem:

Theorem 2.1. ([1]) Let F be a Finsler metric of scalar flag curvature on an

n-dimensional manifold M (n > 2). Then the flag curvature K = constant is

a scalar function on M if and only if H = 0.

Let (M,F ) be an n-dimensional Finsler space. For every x ∈ M , assume

that

SxM =
{
y ∈ TxM |F (x, y) = 1

}
.
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SxM is called the indicatrix of F at x ∈ M and it is a compact hyper surface

of TxM , for every x ∈ M . Let v : SxM ↪→ TxM be its canonical embedding,

where ∥v∥ = 1. Let (t, U) be a coordinate system on SxM . Then, SxM is

represented locally by vi = vi(tη), η = 1, 2, ..., (n− 1). One can show that

∂

∂vi
= F

∂

∂yi
.

The (n− 1) vectors
{
(viη)

}
form a basis for the tangent space of SxM in each

point, where

viη :=
∂vi

∂tη
, η = 1, 2, ..., (n− 1).

For the sake of simplicity, put

∂η :=
∂

∂tη

and observe that

∂η = Fviη
∂

∂yi
.

Let g = gij(x, y)dy
idyj is a Riemannian metric on TxM . Inducing g on

SxM , one gets the Riemannian metric

ḡ = ḡηγdt
ηdtγ ,

where

ḡηγ := viηv
i
γgij .

The canonical unit vertical vector field V (x, y) = ℓi ∂
∂yi together the (n − 1)

vectors ∂η, form the local basis for TxM , B = {u1, u2, ..., un}, where, uη = (viη)

and un = V . We conclude that

g(V, ∂η) = 0,

that is to say that

yiv
i
η = 0.

Theorem 2.2. If F = α2

α−β be an Einstein metric, then the following state-

ments hold:

(a) F is Ricci-flat.

(b) α is Ricci-flat.

(c) β is constant Killing and sk0|k = 0.



102 Azadeh Shirafkan

Consider the following conventions in notations:

qij := rimsmj ,

tij := simsmj ,

tj := bitij = smsmj ,

Ak := 2csk + c2bk + tk +
1

2
ck

Ψk := 3c2yk − c2βbk + 2βck − c0bk + s0sk + 2s0|k − sk|0 − 6csk0,

where, c = c(x) is a scalar function and ck = ∂c/∂xk. Notice that

yk := ajky
j and y0 = α2.

In [9], Li and Shen proved the following characterization of the Ricci-quadratic

Randers metrics.

Theorem 2.3. [9] Let F = α+β be a Randers metric on an n-manifold. Then

it is Ricci-quadratic if and only if

r00 = c(α2 − β2), (2.1)

sk0|k = A0, (2.2)

where, c = c(x) is a scalar function. In this case,

Ric = Ric− 2t00 − tkkα
2 + (n− 1)Ψ0. (2.3)

3. Proof of Theorems

Now, we ready to prove Theorem 1.1.

Proof of Theorem 1.1: Denote the Riemann curvature of α by R̃i
jkl. Using

the Ricci identity for Ricij , with respect to ∇̃, one obtains

Ricij|l|k −Ricij|k|l = −Ricrj R̃r
ikl −Ricir R̃r

jkl −
∂Ricij
∂yr

R̃r
0kl. (3.1)

Multiply (3.1) by yi, we get

Ric0j|l|k −Ric0j|k|l = −Ricrj R̃r
0kl −Ric0r R̃r

jkl. (3.2)

One can easily observe that

Ricij|0 = Ric0j|i = Rici0|j = 0. (3.3)

Multiplying (3.2) by yl and using (3.3) we obtain

Ric0j|0|k −Ric0j|k|0 = −Ricrj R̃r
0k0 −Ric0r R̃r

jk0 = 0. (3.4)

It results immediately that

1

2

∂2Ric

∂yr∂yj
R̃r

0k0 +
∂Ric

∂yr
R̃r

jk0 = 0. (3.5)
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Multiplying (3.5) by ajk yields

1

2

∂2Ric

∂yr∂yk
R̃r k

0 0 + ajkR̃r
jk0

∂Ric

∂yr
= 0 (3.6)

Define the operator Υ as follows

Υ := R̃r k
0 0

1

2

∂2

∂yr∂yk
+ ajkR̃r

jk0

∂

∂yr
. (3.7)

Let us put

ρ := α−2Ric.

Then we have

∂ηρ = α2viηρ;i, (3.8)

and

∂β∂ηρ = α∂βv
i
η ρ;i + α2viηv

j
β ρ;i;j + αvjβ(v

i
η;j)ρ;i. (3.9)

Since

vjβ
∂α

∂yj
= 0,

then we get

∂β∂ηρ = α∂βv
i
η ρ;i + α2viηv

j
β ρ;i;j . (3.10)

Multiplying the two sides of (3.10) by

R̃αβ := R̃α β
n n,

we obtain

R̃ηβ∂β∂ηρ = R̃i j
0 0ρ;i;j + αR̃ηβ∂βv

i
ηρ;i. (3.11)

It follows that

Υ̃(ρ) := R̃αβ∂β∂αρ−Bα∂αρ = 0, (α, β = 1, · · · , n− 1) (3.12)

where

Bη := 2vη iR̃
i
βnγ ã

βγ − αR̃βγ ∂γv
η
β .

Assuming the equation (3.12) on each indicatrix SxM and using the maximum

principle of Hopf, we find ρ as a function of x, only. Therefore, there is a

function c(x) such that

Ric = c(x)α2.

Since it must satisfy Ric|0 = 0, it results that, the function c(x) is a constant

and the relation

Ric = cα2

holds for some constant c ∈ R. The converse is also true, since by a simple

calculation we have Ricij|0 = 0. □

By the Theorem 1.1, we obtain a necessary and sufficient condition for an

Einstein (α, β)-metric to be a Riemannian metric.
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Corollary 3.1. Let F be an Einstein metric on a connected semi-Riemannian

manifold (M,α). Suppose that α is of positive (negative) sectional curvature

and Ric(x, y) ̸= 0. Then F is Riemannian if and only if Ricij|0 = 0.

Proof. By Theorem 1.1, we have

Ric = cα2,

where c ∈ R. Since F is an Einstein metric, we have

Ric = (n− 1)σF 2,

where σ = σ(x) is a function on M . Therefore F is conformal to the Riemann-

ian metric α, i.e, F is a Riemannian metric. The converse is trivial. □

Remark 3.2. The family of Randers metrics on S3 constructed by Bao-Shen

are weakly Berwald which are not Berwaldian [6][19]. Denote generic tangent

vectors on S3 as

u
∂

∂x
+ v

∂

∂y
+ w

∂

∂z
.

The Finsler function for Bao-Shen’s Randers space is given by

F (x, y, z;u, v, w) = α(x, y, z;u, v, w) + β(x, y, z;u, v, w),

with

α =

√
K(cu− zv + yw)2 + (zu+ cv − xw)2 + (−yu+ xv + cw)2

1 + x2 + y2 + z2
,

β =
±
√
K − 1 (cu− zv + yw)

1 + x2 + y2 + z2
,

where K > 1 is a real constant. This family of Randers metrics are Einstein

metrics of positive sectional curvature and have Ricij|0 ̸= 0, while they are not

Riemannian manifolds.

Proof of Theorem 1.2: The curvature form of Berwald connection is given

by

Ωi
j = dωi

j − ωk
j ∧ ωi

k =
1

2
Ri

jklω
k ∧ ωl −Bi

jklω
k ∧ ωn+l. (3.13)

For the Berwald connection, we have the following structure equation:

dgij − gjkΩ
k
i − gikΩ

k
j = −2Lijkω

k + 2Cijkω
n+k. (3.14)

Differentiating (3.14) yields the following Ricci identity:

gpjΩ
p
i − gpiΩ

p
j = −2Lijk|lω

k ∧ ωl − 2Lijk,lω
k ∧ ωn+l − 2Cijl|kω

k ∧ ωn+l

−2Cijl,kω
n+k ∧ ωn+l − 2CijpΩ

p
ly

l. (3.15)

It follows from (3.15) that:

Cijl|k + Lijk,l =
1

2
gpjB

p
ikl +

1

2
gipB

p
jkl. (3.16)
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Differentiating of (3.13) yields:

dΩ j
i − ω k

i ∧ Ω j
k + ω j

k ∧ Ω k
i = 0. (3.17)

Define Bi
jkl|m and Bi

jkl,m by:

dBi
jkl −Bi

mklω
m
i −Bi

jmlω
m
k −Bi

jkmωm
l +Bi

jklω
i
m = Bi

jkl|mωm +Bi
jkl,mωn+m.

(3.18)

Similarly, we define Ri
jkl|m and Ri

jkl,m:

dRi
jkl −Ri

mklω
m
i −Bi

jmlω
m
k −Ri

jkmωm
l +Ri

jklω
i
m = Ri

jkl|mωm +Ri
jkl,mωn+m.

(3.19)

From (3.17), (3.18) and (3.19), one obtain the following Bianchi identities:

Ri
jkl|m +Ri

jlm|k +Ri
jmk|l = 0, (3.20)

Bi
jkl|m −Bi

jkm|l = Ri
jkl,m, (3.21)

Bi
jkl,m = Bi

jkm,l. (3.22)

Contracting i and k in (3.21) yields

Bp
jpl|m −Bp

jpm|l = Rp
jpl,m. (3.23)

By definition of the Riemann curvature of Berwald connection, we have

Ri
jkl(x, y) =

1

3

∂

∂yj

{∂Ri
k

∂yl
− ∂Ri

l

∂yk

}
. (3.24)

Following (3.24) a Finsler space is of quadratic Riemann curvature if and only

of the Berwald-Riemann curvature depends only to the position x. Now we

have

Ri
k = Ri

jkl(x, y)y
jyl,

We get

Ric = Rp
jpl(x, y)y

jyl. (3.25)

Then Ric is quadratic in y ∈ TxM if Rp
jpl are functions of position alone, i.e.,

Rp
jpl = Rp

jpl(x). This yields

Rp
jpl,m = 0. (3.26)

By (3.23) and (3.26) we have

Bp
jpl|m = Bp

jpm|l. (3.27)

Multiplying (3.27) with ym

Ejk|mym = 0. (3.28)

This completes the proof. □
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Roy. Belg. Bull. Cl. Sci. (5), 80(1988), 271-322.

2. H. Akbar-Zadeh, Generalized Einstein manifolds, J. Geom. Phys. 17 (1995) 342-380.
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l’I.H.P, tome. 15, no.3, (1957), 205-215.

23. P. C. Stravinos, On the Generalized Metric Structure of Space-Time: Finslerian

Anisotropic Gravitational Field, Journal of Physics: Conference Series. 8 (2005), 49-

57.

24. P. C. Stavrinos and F. I. Diakogiannis, Gravitation and Cosmology, 10(4) (2005) 1-11.

25. E.S. Sevim and M. Gabrani, On H-curvature of Finsler warped product metrics, Journal

of Finsler Geometry and its Applications, 1(1) (2020), 37-44.

26. A. Tayebi, E. Peyghan and H. Sadeghi, On Matsumoto-type Finsler metrics, Nonlinear

Analysis: RWA, 13(2012), 2556-2561.



On a class of Ricci-Quadratic Finsler metrics 107

27. S.I. Vacaru, Locally Anisotropic Kinetic Processes and Thermodynamics in Curved

Spaces, Annals of Physics, 290 (2001), 83-123.

Received: 19.12.2020

Accepted: 22.06.2021


