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Abstract. Let F be a (reversible) Finsler metric on a Riemannian space (M, «)
of positive (or negative) sectional curvature. Suppose that the Ricci curvature
of F' is horizontally constant along Finslerian geodesics. Then we show that F’
is a Ricci-quadratic Finsler metric.
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1. INTRODUCTION

An («, 8)-metric F is a Finsler metric on the background Riemannian man-
ifold (M, «). Therefore, on is dealing with two metrics F' and « within the re-
lated computations. This bi-metric issue may be crucial for applied disciplines
and there may be considered several types of bi-metric spaces. For example,
the anisotropy property can be detected using radiation in the background
Riemannian space. One may assume that the background Riemannian space
has some specific geometric properties; Bi-metric theories in General Relativity
are of such various types and contain both the usual metric and a metric of
constant curvature, and may contain other scalar or vector fields, cf. [4].

Given a Finsler metric F = F(z,y), the locally minimizing curves are char-
acterized by the system of differential equations

&)+ 2G (c(t), é(t)) = 0,
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where the local functions G* = G*(x,y) are called the spray coefficients. For
a Riemannian metric F' = \/g;;(x)y’y?, the spray coefficients are quadratic in
y € T, M. There are non-Riemannian metrics whose spray coeflicients still have
this quadratic property. Finsler metrics with this property are called Berwald
metrics. In this case, we have

I ]
G = STy

The Chern connection (as well as the Berwald connection) of any Berwald
metric F' is the Levi-Civita connection of a Riemannian metric o and the
Riemann and the Ricci curvatures of F' are eventually those of the Riemannian
metric . Hence every Berwald space deals with a bi-metrics theory.

The notion of Riemann curvature for Riemann metrics can be extend to
Finsler metrics. For y € T, My, the Riemann curvature Ry : T, M — T, M is
defined by Ry(u) = R}, (y)u* 52 where

Oxk  Oxidyk Oyioyk  Oyi Oyk

The Ricci curvature on an n-manifold M is defined by

(1.1)

n
Ric = Z R (7).
k=1
By definition, the Ricci curvature is a positively homogeneous function of degree
two in y € TM. But it is not quadratic in y € T, M, in general. From Eq.(1.1),
one can see that if F'is a Berwald metric then the Ricci curvature is quadratic
iny € T,M. Finsler metrics with such curvature property are called Ricci-
quadratic metrics [9]. The key idea for Finsler metrics with positive quadratic
Ricci curvature is that thereby the Ricci curvature

Ric(z,y) = hij(2)y'y’
defines a natural Riemannian metric on M given by h = h;;(z)dz'dz?.

The Randers metrics are the most popular Finsler metrics appearing in
many areas of Differential geometry and Physics and simply accessible by a
Riemannian metrics o = /a;;(z)y’y’ and a 1-form 3 = b;(z)y* on a manifold
M. It has been in the center of researches devoted in unified field theory for

long years after G. Randers applied it in [10]. In [9], Li-Shen characterize
Ricci-quadratic Randers metrics.

Let us denote the Levi-Civita connection of a by V and denote the horizontal
s

i

and vertical covariant derivations with respect to the horizontal vector 5 and

0

the vertical vector By7 associated to V by “,” and “;” respectively. Let

N _'_182Ric
2 2 Oyioyd
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”

where Ric is the Ricci tensor of F' and “) := | y° 7 is denote the horizontal
covariant derivation on geodesics of Riemannian metric .
In this paper we prove the following result:

Theorem 1.1. Let F be a (reversible) Finsler metric on a background Rie-
mannian space (M, ) of positive (or negative) sectional curvature. Suppose
that Ricci curvature satisfies following

Ricmo =0.
Then F' is Ricci-quadratic.

There are many Finsler metrics whose Riemann curvature in every direction
is quadratic. A Finsler metric F' is said to be R-quadratic if R, is quadratic in
y € T, M at each point x € M. Indeed a Finsler metric is R-quadratic if and
only if the h-curvature of Berwald connection depends on position only in the
sense of Bdcsé-Matsumoto [3]. We have Ri = R; w(T, )y y!. Therefore R is
quadratic in y € T, M if and only if R} ;; are functions of position alone. In
this case, we have

2 = R; kl(x)yjyl
It is remarkable that, the notion of R-quadratic Finsler metrics was introduced
by Shen, which can be considered as a generalization of Berwald metrics and
R-flat metrics [20]. He proved that every compact R-quadratic Finsler metric
is a Landsberg metric. In [16], Najafi-Bidabad-Tayebi showed that every R-
quadratic Finsler metric satisfies H = 0.

A Finsler metric F' is said to be Ricci-quadratic if Ricci is quadratic in
y € T, M at each point x € M. In this paper, we prove the following.

Theorem 1.2. Fvery Ricci-quadratic Finsler manifold (M, F) is of vanishing
H -curvature.

2. PRELIMINARIES

Let M be a n-dimensional C'*° manifold. Denote by T, M the tangent space
at x € M, by TM = UgepT, M the tangent bundle of M and by TMy :=
TM \ {0} the slit tangent bundle.

A Finsler metric on M is a function F' : TM — [0, co) which has the following
properties:

(i) Fis C>® on TMy :=TM \ {0};

(ii) F is positively 1-homogeneous on the fibers of tangent bundle T'M;

(iii) for each y € T, M, the following quadratic form g, TM xT;M — R on
T, M is positive definite,

1
g, (u,v) == 3 F2(y + su + tv)} |s.t=0, w,v € T, M.
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Let x € M and F,, := F|r, 5. To measure the non-Euclidean feature of F,
define C, : T, M x T, M x T, M — R by C,(u,v,w) := Ci;x(y)u'vwk where

1 9PF? W)
4 9yt0y oyk 4
The family C := {Cy } e, is called the Cartan torsion. It is well known that

Cijk(y) :

C=0 if and only if F' is Riemannian.

The horizontal covariant derivatives of C along geodesics give rise to the
Landsberg curvature Ly, : T, M x T, M x T, M — R defined by

Ly (u7 v, ’LU) = Lljk(y)ulvjwk,

— i 0
3’:7w_waxz‘

where u = w22 |,, v =" « and Liji, := Cjjksy°. The family
L :={L,}yernm, is called the Landsberg curvature. A Finsler metric is called a

Landsberg metric if L=0 [18].

Given a Finsler manifold (M, F), then a global vector field G is induced by
F on TMjy, which in a standard coordinate (z?,") for T My is given by
o .0
ox? oy’

G=y
where G = G%(x,y) are local functions on T'M given by

1 il{ PF?] 8[F2]}
1 _ T, M.
4 8xk8yly oat J7 Y€
G is called the associated spray to (M, F).
For y € T, My, define By : T, M @ T, M @ T, M — T, M and E, : T, M ®
T,M — R by

G =

0

oz’ =

B, (u,v,w) i= Bl (y)u/vhu’ B, (u,0) = Eji(y)uo*,

where
i 3Gt 1 .
B jkz(y) = W(Q% Ejk(y) = b} jkm(y)'

B and E are called the Berwald curvature and mean Berwald curvature re-
spectively. A Finsler metric F' is called a Berwald metric and weakly Berwald
metric if B = 0 and E = 0, respectively [19].

The quantity H, = H;;jdz’ ® dz’ is defined as the covariant derivative of E
along geodesics. More precisely
Hij = Eij‘mym.
For H;;, we get H;;y' = 0 (see [1], [17] and [25]).



100 Azadeh Shirafkan

The Busemann-Hausdorff volume form dVp = op(x)dz'---dz™ on any
Finsler space (M, F') is defined by

_ Vol(B™(1))
vol{ (1) € R | F(y' 3%

op(x):

x)<1}.

Assume that

and define

Then, 7 = 7(z,y) is a scalar function on slit tangent bundle T'My, which is
called the distortion [19].
For a vectory € T, M, let ¢(t), —e < t < ¢, denote the geodesic with ¢(0) = =
and ¢(0) = y. The function
S(y) = < [r(e(t)] e=o
is called the S-curvature with respect to the Busemann-Hausdorff volume form.
A Finsler space is said to be of isotropic S-curvature if there is a function
¢ = ¢(z) defined on M such that

S=(n+1)c(z)F.

It is called a Finsler space of constant S-curvature once c is a constant. Every
Berwald space is of vanishing S-curvature [19]. Notice that, S-curvature are
in fact non-Riemannian quantities, namely, they vanish for the Riemannian
metrics.

Take an arbitrary plane P C T, M (flag) and a non-zero vector y € P (flag
pole), the flag curvature K(P,y) is defined by

gy (Ry (’U)’ U)
95(¥, ¥) g9y (v,0) = g4 (v, ) gy (v,y)

We say that a Finsler metric F' is of scalar curvature if for any y € T, M, the
flag curvature K = K(z,y) is a scalar function on TMy. If K = constant, then

K(P7 y) =

F' is said to be of constant flag curvature. The important of the quantity H
lies in the following well-known theorem:

Theorem 2.1. ([1]) Let F be a Finsler metric of scalar flag curvature on an
n-dimensional manifold M (n > 2). Then the flag curvature K = constant is
a scalar function on M if and only if H = 0.

Let (M, F) be an n-dimensional Finsler space. For every x € M, assume
that

S, M = {y € T, M|F(z,y) = 1}.
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SxM is called the indicatrix of F' at x € M and it is a compact hyper surface
of T,M, for every x € M. Let v : S;M — T, M be its canonical embedding,
where [jv]] = 1. Let (¢,U) be a coordinate system on S;M. Then, S, M is
represented locally by v* = vi(t7), n=1,2,...,(n — 1). One can show that

0 0

ovt T Oyt
The (n — 1) vectors {(vin)} form a basis for the tangent space of S, M in each
point, where
; o'
i . Y _ _
Vg =gy M= 1,2,...,(n—1).

For the sake of simplicity, put

and observe that
0

Oy = sznﬁyi'

Let g = gij(z,y)dy’dy’ is a Riemannian metric on 7, M. Inducing g on
SzM, one gets the Riemannian metric
g = gy dt"dt?,
where
Gy 7= 0,0 935

The canonical unit vertical vector field V(z,y) = ¢ 3?#’ together the (n — 1)
vectors 0, form the local basis for T, M, B = {u',u?, ...,u"}, where, u" = (vin)

and u™ = V. We conclude that

g(‘/, 877) = 0,

that is to say that

yivi?7 =0.

Theorem 2.2. If F' = % be an FEinstein metric, then the following state-
ments hold:

(a) F is Ricci-flat.

(b) a is Ricci-flat.

(c) B is constant Killing and Sko\k =0.
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Consider the following conventions in notations:

L m
qij = Tim$S j,
m
7

tj = bzt” = SmS

tij = S8imS

m
VR

1
Ay = 2csy, + CQbk + i, + §Ck

U, .= 3¢y, — By, + 2Ber, — coby + sosi + 250\ — Skjo — 6csko,

where, ¢ = ¢(x) is a scalar function and ¢, = dc/0z*. Notice that

Yk 1= ajkyj and yo = o’

In [9], Li and Shen proved the following characterization of the Ricci-quadratic

Randers metrics.

Theorem 2.3. [9] Let F = a+f be a Randers metric on an n-manifold. Then

it is Ricci-quadratic if and only if
roo = c(a? — %),
Skouc = Ao,
where, ¢ = c(x) is a scalar function. In this case,

Ric = Ric — 2to0 — tkkOéQ + (n — 1)\:[/0.

3. PROOF OF THEOREMS

Now, we ready to prove Theorem 1.1.

(2.3)

Proof of Theorem 1.1: Denote the Riemann curvature of a by Rijkl' Using

the Ricci identity for Ric;;, with respect to V., one obtains

Ric;j;x — Ricijjp = —Ric,; Ry, — Ricy, Rrjkl - 8?;Sij Ry
Multiply (3.1) by v, we get
Rico, — Ricojp = —Ric,; Ry — Rico, Ry
One can easily observe that
Ric;; 0 = Ricy;; = Ricyo; = 0.
Multiplying (3.2) by y' and using (3.3) we obtain
Rico;jox — Ricojjo = —Ricy; R'gro — Rico, R jp = 0.

It results immediately that
1 0°Ric -, JRic -,
20y ot gy Fiw =0

(3.1)
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Multiplying (3.5) by a’* yields

1 §°Ric 5. ORic
28yT3kROO+a R]kOTyTZO (36)
Define the operator T as follows
. 1 92 = 0
— k k pr
T.— RTO 0 §W +a‘7 Rjkoaiyrl (37)
Let us put
p = a ?Ric.
Then we have
Oyp = v’ Py (3.8)
and
0p0np = aagv p.i + v ,]v 5 Piisj + av’ (v w)p%i' (3.9)
Since 5
i o _
v oy 0,
then we get
030np = ozagvin i+ a0 5 Piisj- (3.10)
Multiplying the two sides of (3.10) by
R .= R>5
we obtain
R"™050,p = R' opsisj + aR" 00", p,;. (3.11)
It follows that
T(p) := R*%030ap — B®0ap =0, (,f=1,---,n—1) (3.12)

where
B = 20" Ry, " — aR% 940"
Assuming the equation (3.12) on each indicatrix S, M and using the maximum
principle of Hopf, we find p as a function of x, only. Therefore, there is a
function ¢(x) such that
Ric = c(z)a?.
Since it must satisfy Ric|, = 0, it results that, the function c(x) is a constant
and the relation
Ric = co?
holds for some constant ¢ € R. The converse is also true, since by a simple
calculation we have Ric;;o = 0. (]

By the Theorem 1.1, we obtain a necessary and sufficient condition for an
Einstein (a, §)-metric to be a Riemannian metric.
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Corollary 3.1. Let F be an Einstein metric on a connected semi-Riemannian
manifold (M, «). Suppose that « is of positive (negative) sectional curvature
and Ric(x,y) #0. Then F is Riemannian if and only if Ricj, = 0.

Proof. By Theorem 1.1, we have

Ric = ca?,

where ¢ € R. Since F' is an Einstein metric, we have
Ric = (n — 1)oF?,

where 0 = o(x) is a function on M. Therefore F' is conformal to the Riemann-
ian metric o, i.e, F' is a Riemannian metric. The converse is trivial. (Il

Remark 3.2. The family of Randers metrics on S constructed by Bao-Shen
are weakly Berwald which are not Berwaldian [6][19]. Denote generic tangent
vectors on S as

ug —HJQ +w£
Ox Oy 0z

The Finsler function for Bao-Shen’s Randers space is given by
F(:L‘7y7 z; u7U’w) = a(x’ y?Z;u) ,U’ w) + B(:'E7y7z;u’ U’ w)7

with

VE(cu —zv+yw)? + (zu + cv — 2w)2 + (—yu + 2v + cw)?
o =
L4224+ y? + 22 ’

VK -1 (cu—zv+yw)
A= 1422 +y2+ 22

where K > 1 is a real constant. This family of Randers metrics are Finstein

# 0, while they are not

)

metrics of positive sectional curvature and have Ric;j|,

Riemannian manifolds.

Proof of Theorem 1.2: The curvature form of Berwald connection is given

by
. . _ 1 . _
QZj = dwlj — wkj A wzk = §leklwk A wl — Bljklwk A wnJrl. (313)
For the Berwald connection, we have the following structure equation:
dgij — gijk,L- — gikaj = —2Lijkwk + 2C«ijkwn+k' (314)
Differentiating (3.14) yields the following Ricci identity:
gijpi — gm'ij = —QLijk”wk Awl — 2Lijk7lwk Aw™— QCij”kwk A wH
=201, w™F A W™ — 205,08y (3.15)

It follows from (3.15) that:

1 1
Cijuk + Lijrg = §9ijp¢kz + igiPBpjk:l' (3.16)
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Differentiating of (3.13) yields:

Q7 —wFAQ) +wl Ak =0. (3.17)
Define Bijkllm and Bijkl,m by:
dBji'kl — B i — Bgi'mlwl:n - Bgi'kmwlm + B;’klen = B;‘k”mwm + B;kz,mwwrm-
(3.18)
Similarly, we define leklhn and R'jp, o

dR:y — Ry wi” — Biwi' — Rippwi” + Rjpwy, = R W+ Ry pyw .

J J jkl|m

(3.19)

From (3.17), (3.18) and (3.19), one obtain the following Bianchi identities:
R g + R e + R ey = 0, (3.20)
Bijk’llm - Bijkmll = Rijkl,ma (3.21)
B'jpm = B jm - (3.22)

Contracting ¢ and k in (3.21) yields
P ¥ _ D

B jpllm B jpm|l — R jpl,m* (323)

By definition of the Riemann curvature of Berwald connection, we have
B li{c’)R}C B 8Rf}
30y Loyt oyt )’
Following (3.24) a Finsler space is of quadratic Riemann curvature if and only
of the Berwald-Riemann curvature depends only to the position . Now we

Rijkl(xvy) (3.24)

have

Rik = Rijkz(x,y)yjyl,

We get
Ric =R’ (z, )iyl (3.25)

Then Ric is quadratic in y € T, M if R? pl A€ functions of position alone, i.e.,
RP. = RP. (z). This yields

Jpl = 77 jpl
R’ =0. (3.26)
By (3.23) and (3.26) we have
Bpjp”m = Bpjpm\l' (3.27)
Multiplying (3.27) with y™
This completes the proof. O
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