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Abstract. In this paper, we study the class of conformally flat cubic (α, β)-

metrics. We prove that every conformally flat cubic (α, β)-metric with rela-

tively isotropic mean Landsberg curvature must be either Riemannian metrics

or locally Minkowski metrics.
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1. Introduction

The Conformal Geometry is the study of the set of angle-preserving trans-

formations on a manifold. The study of Conformal Geometry has an old and

beautiful history in Mathematics. Indeed, Conformal Geometry has played an

important role in Differential Geometry and Physical Theories. The conformal

change of Riemannian metrics and its related subject such as Riemannian cur-

vature and Ricci curvature have been studied by many geometers. There are

many important local and global results in Riemannian conformal geometry,

which in turn lead to a better understanding on Riemann manifolds.

On the other hand, Finsler geometry is just Riemannian geometry with-

out the quadratic restriction. The well-known Weyl theorem shows that the

projective and conformal properties of a Finsler space determine the metric

properties uniquely. This means that the conformal properties of a Finsler

metric and related subject to it deserve extra attention.
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Let F and F̃ be two arbitrary Finsler metrics on a manifold M Then we say

that F is conformal to F̃ if and only if there exists a scalar function σ = σ(x)

such that F (x, y) = eσ(x)F̃ (x, y). The scalar function σ is called the conformal

factor. A Finsler metric F = F (x, y) on a manifold M is called a conformally

flat metric if there exists a locally Minkowski metric F̃ = F̃ (y) such that

F = eκ(x)F̃ , where κ = κ(x) is a scalar function on M . A new and hot

issue is to characterization of conformally flat Finsler metrics. In [2], Asanov

constructed a Finslerian metric function on the manifold N = R×M , whereM

is a Riemannian manifold endowed with two real functions, and showed that

the tangent Minkowski spaces of such a Finsler space are conformally flat. This

motivated him to propose a Finslerian extension of the electromagnetic field

equations whose solutions are explicit images of the solutions to the ordinary

Maxwell equations.

In order to find conformally flat Finsler metrics, we consider the class of

m-th root Finsler metrics. Let (M,F ) be an n-dimensional Finsler manifold,

TM its tangent bundle and (xi, yi) the coordinates in a local chart on TM .

Let F : TM → R be a scalar function defined by

F =
m
√
A,

where A := ai1...im(x)yi1yi2 . . . yim and ai1...im are symmetric in all its indices.

Then F is called an m-th root Finsler metric. An m-th root Finsler metric

can be regarded as a direct generalization of a Riemannian metric in the sense

that the 2-th root metric is a Riemannian metric F =
√
aij(x)yiyj . The fourth

root metrics F = 4
√
aijkl(x)yiyjykyl are called the quartic metrics. The special

quartic metric F = 4
√
yiyjykyl is called Berwald-Moór metric which plays

an important role in theory of space-time structure, gravitation and general

relativity. For more progress, see [7], [8], [9] and [11].

In [10], Tayebi-Razgordani proved that every conformally flat weakly Ein-

stein 4-th root (α, β)-metric on a manifold M of dimension n ≥ 3 is either

a Riemannian metric or a locally Minkowski metric. Also, they showed that

every conformally flat 4-th root (α, β)-metric of almost vanishing Ξ-curvature

on a manifold M of dimension n ≥ 3 reduces to a Riemannian metric or a

locally Minkowski metric.

In this paper, we study conformally flat 3-th root (α, β)-metric with rela-

tively isotropic mean Landsberg curvature. More precisely, we prove the fol-

lowing.

Theorem 1.1. Let F = F (x, y) be a conformally flat 3-th root (α, β)-metric

on a manifold M of dimension n ≥ 3. Suppose that F has relatively isotropic

mean Landsberg curvature

J+ c(x)F I = 0, (1.1)

where c = c(x) is a scalar function on M . Then F reduces to a Riemannian

metric or a locally Minkowski metric.
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2. Preliminaries

LetM be a n-dimensional C∞ manifold and TM =
∪

x∈M TxM the tangent

bundle. Let (M,F ) be a Finsler manifold. The following quadratic form gy on

TxM is called fundamental tensor

gy(u, v) =
1

2

∂2

∂s∂t

[
F 2(y + su+ tv)

]
|s=t=0, u, v ∈ TxM.

Let x ∈M and Fx := F |TxM . To measure the non-Euclidean feature of Fx, for

a non-zero vector y ∈ TxM0 := TxM−{0}, define Cy : TxM×TxM×TxM → R
by

Cy(u, v, w) :=
1

2

d

dt

[
gy+tw(u, v)

]
t=0

=
1

4

∂3

∂r∂s∂t

[
F 2(y+ru+sv+ tw)

]
r=s=t=0

,

where u, v, w ∈ TxM . By definition, Cy is a symmetric trilinear form on TxM .

The family C := {Cy}y∈TM0 is called the Cartan torsion. Thus C = 0 if and

only if F is Riemannian.

For y ∈ TxM0, define Iy : TxM → R by

Iy(u) =

n∑
i=1

gij(y)Cy(u, ∂i, ∂j),

where {∂i} is a basis for TxM at x ∈ M . The family I := {Iy}y∈TM0 is called

the mean Cartan torsion. Thus, Iy(u) := Ii(y)u
i, where Ii := gjkCijk.

On the slit tangent bundle TM0, the Landsberg curvature Lijk := Lijkdx
i⊗

dxj ⊗ dxk is defined by

Lijk := Cijk;my
m,

where ”; ” denotes the horizontal covariant derivative with respect to F .

For an n-dimensional Finsler manifold (M,F ), there is a special vector field

G which is induced by F on TM0 := TM\{0}. In a standard coordinates

(xi, yi) for TM0, it is given by

G = yi
∂

∂xi
− 2Gi(x, y)

∂

∂yi
,

where

Gi :=
gil

4

{ ∂2F 2

∂xk∂yl
yk − ∂F 2

∂xl

}
The homogeneous scalar functions Gi are called the geodesic coefficients of F .

The vector field G is called the associated spray to (M,F ).

The Landsberg curvature can be expressed as following

Lijk = −1

2
FFym [Gm]yiyjyk (2.1)

A Finsler metric is called the Landsberg metric if Lijk = 0.
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The horizontal covariant derivatives of the mean Cartan torsion I along

geodesics give rise to the mean Landsberg curvature Jy : TxM → R which are

defined by Jy(u) := Ji(y)u
i, where

Ji := Ii|sy
s.

Here, “|” denotes the horizontal covariant derivative with respect to the Berwald

connection of F . The family J := {Jy}y∈TM0 is called the mean Landsberg

curvature. Also, the mean Landsberg curvature can be expressed as following

Ji := gjkLijk (2.2)

A Finsler metric F on a manifold M is called of relatively isotropic mean

Landsberg curvature if

J+ cF I = 0,

where c = c(x) is a scalar function on M .

In this paper, we will focus on studying (α, β)-metrics. Let “|” denote the

covariant derivative with respect to the Levi-Civita connection of α. Denote

rij :=
1

2

(
bi|j + bj|i

)
, sij :=

1

2

(
bi|j − bj|i

)
sij := aimsmj , rij := aimrmj , rj := birij , sj := bisij ,

where

(aij) := (aij)
−1, bj := ajkbk.

We put

r0 := riy
i, s0 := siy

i, r00 := rijy
iyj , si0 := sijy

j .

Let Gi and Gi
α denote the geodesic coefficients of F and α respectively in the

same coordinate system. Then we have

Gi = Gi
α + αQsi0 +

{
r00 − 2Qαs0

}{
Ψbi +Θα−1yi

}
, (2.3)

where

Q :=
ϕ′

ϕ− sϕ′
,

Θ :=
ϕϕ′ − s(ϕϕ′′ + ϕ′ϕ′)

2ϕ
[
ϕ− sϕ′ + (b2 − s2)ϕ′′

] ,
Ψ :=

ϕ′′

2
[
ϕ− sϕ′ + (b2 − s2)ϕ′′

] .
It is easy to see that if rij = sij = 0, then

Gi = Gi
α.

In this case, F reduces to a Berwald metric. For more details, see [4] and [6].
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Let

∆ := 1 + sQ+ (b2 − s2)Q′,

Φ := −(n∆+ 1 + sQ)(Q− sQ′)− (b2 − s2)(1 + sQ)Q′′,

Ψ1 :=
√
b2 − s2∆

1
2

[√
b2 − s2Φ

∆
3
2

]′

,

hj := bj − α−1syj .

By (2.1), (2.2), (2.3), the mean Landsberg curvature of the (α, β)-metric F =

αϕ(s), s = β/α, is given by

Jj =
1

2α4∆

{
2α3

b2 − s2

[Φ
∆

+ (n+ 1)(Q− sQ′)
]
(s0 + r0)hj

+
α2

b2 − s2

[
Ψ1 + s

Φ

∆

]
(r00 − 2αQs0)hj

+ α
[
− α2Q′s0hj + αQ(α2sj − yjs0) + α2∆sj0

+ α2(rj0 − 2αQsj)− (r00 − 2αQs0)yj

]Φ
∆

}
.

Here, yj = aijy
i. See [3] and [5].

In [5], Li-Shen considered weakly Landsberg (α, β)-metric and proved the

following.

Theorem 2.1. ([5]) Let F = αϕ(β/α) be an almost regular non-Riemannian

(α, β)-metric on a manifold M of dimension n ≥ 3. Then F is a weakly

Landsberg metric if and only if β satisfies

rij = k
{
b2aij − bibj

}
, sij = 0, (2.4)

where k = k(x) is a scalar function, and ϕ = ϕ(s) satisfies

Φ =
λ√

b2 − s2
∆

3
2 , (2.5)

where λ is a constant.

3. Proof of Theorem 1.1

in this section, we are going to prove Theorem 1.1. To prove it, we need the

following.

Lemma 3.1. ([3]) For an (α, β)-metric F = αϕ(s), s = β/α, the mean Cartan

torsion is given by

Ii = − 1

2F

Φ

∆
(ϕ− sϕ′)hi. (3.1)

In [3], the following was proved.
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Lemma 3.2. ([3]) An (α, β)-metric F is a Riemannian metric if and only if

Φ = 0.

In [3], the following formula obtained

Jj + c(x)FIj = − 1

2α4∆

{
2α3

b2 − s2

[
Φ

∆
+ (n+ 1)(Q− sQ′)

]
(s0 + r0)hj

+
α2

b2 − s2

[
Ψ1 + s

Φ

∆

]
(r00 − 2αQs0)hj

+α

[
− α2Q′s0hj + αQ(α2sj − yjs0) + α2∆sj0 + α2(rj0 − 2αQsj)

−(r00 − 2αQs0)yj

]
Φ

∆
+ c(x)α4Φ(ϕ− sϕ′)hj

}
. (3.2)

Also, we remark the following key lemma.

Lemma 3.3. ([1]) Let F = αϕ(s), s = β/α, be an (α, β)-metric. Then F

is locally Minkowskian if and only if α is a flat Riemannian metric and β is

parallel with respect to α.

Also, the following holds.

Lemma 3.4. ([3]) If ϕ = ϕ(s) satisfies Ψ1 = 0, then F is Riemannian.

Now, assume that F = αϕ(s), s = β/α, is a conformally flat Finsler metric,

that is, F is conformally related to a Minkowski metric F̃ . Then there exists

a scalar function σ = σ(x) on the manifold, so that F̃ = eσ(x)F . It is easy to

see that F̃ = α̃ϕ(s̃), s̃ = β̃/α̃. We have

α̃ = eσ(x)α, β̃ = eσ(x)β

which are equivalent to

ãij = e2σ(x)aij , b̃i = eσ(x)bi.

Let “∥” denote the covariant derivative with respect to the Levi-Civita connec-

tion of α̃. Put

σi :=
∂σ

∂xi
, σi := aijσj .

The Christoffel symbols Γi
jk of α and the Christoffel symbols Γ̃i

jk of α̃ are

related by

Γ̃i
jk = Γi

jk + δijσk + δikσj − σiajk.
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Hence, one can obtain

b̃i∥j =
∂b̃i
∂xj

− b̃sΓ̃
i
jk = eσ(bi|j − bjσi + brσ

raij). (3.3)

By Lemma 3.38, for Minkowski metric F̃ , we have

b̃i∥j = 0.

Thus

bi|j = bjσi − brσ
raij , (3.4)

rij =
1

2
(σibj + σjbi)− brσ

raij , (3.5)

sij =
1

2
(σibj + σjbi), (3.6)

rj = −1

2
(brσ

r)bj +
1

2
σjb

2, (3.7)

sj =
1

2
(brσ

r)bj − σjb
2, (3.8)

ri0 =
1

2
[σiβ + (σry

r)bi]− σrb
ryi, (3.9)

si0 =
1

2
[σiβ + (σry

r)bi]. (3.10)

Further, we have

r00 = (σry
r)β − (σry

r)α2, (3.11)

r0 =
1

2
(σry

r)b2 − 1

2
(σrb

r)β, (3.12)

s0 =
1

2
(σry

r)β − 1

2
(σry

r)b2. (3.13)

By (3.12) and (3.13), the conformally flat (α, β)-metrics satisfying

r0 + s0 = 0

which is equivalent to the length of β with respect to α being a constant.

We take an orthonormal basis at any point x with respect to α such that

α =

√√√√ n∑
i=1

(yi)2 and β = by1,

where b := ∥βx∥α. By using the same coordinate transformation

ψ : (s, uA) −→ (yi)

in TxM , we get

y1 =
s√

b2 − s2
ᾱ, yA = uA, 2 ≤ A ≤ n, (3.14)
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where

ᾱ =

√√√√ n∑
i=2

(uA)2.

We have

α =
b√

b2 − s2
ᾱ, β =

bs√
b2 − s2

ᾱ. (3.15)

Put

σ̄0 := σAu
A.

Then, by (3.4)-(3.8), (3.14) and (3.15) we have

r00 = −bσ1ᾱ2 +
bsσ̄0ᾱ√
b2 − s2

, (3.16)

r0 =
1

2
b2σ̄0 = −s0, (3.17)

r10 =
1

2
bσ̄0, (3.18)

rA0 =
1

2

σAbsᾱ√
b2 − s2

− (bσ1)uA, (3.19)

s1 = 0, sA = −1

2
σAb

2, (3.20)

s10 =
1

2
bσ̄0, sA0 =

1

2

σAbsᾱ√
b2 − s2

, (3.21)

h1 = b− s2

b
, hA = −

√
b2 − s2suA

bᾱ
. (3.22)

Proof of Theorem 1.1: We remark that b̃ = constant. If b̃ = 0, then

F = ek(x)α̃ is a Riemannian metric. Now, let F is not Riemannian metric.

Assume that F is a conformally flat (α, β)-metric with relatively isotropic mean

Landsberg curvature. By (3.2) and r0 + s0 = 0, we get

α2

b2 − s2

[
Ψ1 + s

Φ

∆

]
(r00 − 2αQs0)hj + α

[
− α2Q′s0hj + αQ(α2sj − yjs0)

+ α2∆sj0 + α2(rj0 − 2αQsj)− (r00 − 2αQs0)yj

]Φ
∆

+ c(x)α4Φ(ϕ− sϕ′)hj = 0. (3.23)

Letting j = 1 in (3.23), we have

α2

b2 − s2

[
Ψ1 + s

Φ

∆

]
(r00 − 2αQs0)h1 + α

[
− α2Q′s0h1 + αQ(α2s1 − y1s0)

+ α2∆s10 + α2(r10 − 2αQs1)− (r00 − 2αQs0)y1

]
Φ

∆

+ c(x)α4Φ(ϕ− sϕ′)h1 = 0. (3.24)
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Putting (3.15)-(3.22) into (3.24) and multiplying the result with 2∆(b2−s2)5/2
implies that

2b2(b2 − s2)3/2∆(bΦϕc− bΦsϕ′c−Ψ1σ1)ᾱ
4

+ b2(b2 − s2)σ̄0(b
4ΦQ′ − b2Φ∆− b2ΦQ′s2)

+ 2b2Ψ1∆Q+ b2Φ+ b2ΦQs+ 2Ψ1∆s)ᾱ
3 = 0. (3.25)

From (3.25), we get

∆
[
bΦϕc− bΦsϕ′c−Ψ1σ1

]
= 0, (3.26)

σ̄0(b
4ΦQ′ − b2Φ∆− b2ΦQ′s2) + 2b2Ψ1∆Q

+b2Φ+ b2ΦQs+ 2Ψ1∆s = 0. (3.27)

Note that ∆ = Q′(b2 − s2) + sQ+ 1. Simplifying (3.27) yields

(b2Ψ1∆Q+Ψ1∆s)σ̄0 = 0,

that is

Ψ1∆(b2Q+ s)σ̄0 = 0. (3.28)

Letting j = A in (3.23), we have

α2

b2 − s2

[
Ψ1 + s

Φ

∆

]
(r00 − 2αQs0)hA + α

[
− α2Q′s0hA + αQ(α2sA − yAs0)

+ α2∆sA0 + α2(rA0 − 2αQsA)− (r00 − 2αQs0)yA

]
Φ

∆

+ c(x)α4Φ(ϕ− sϕ′)hA = 0. (3.29)

Putting (3.15)-(3.22) into (3.29) and by using the similar method used in the

case of j = 1, we get

−(s∆+ s+ b2Q)b2ΦσAᾱ
2 +

[
(s∆+ s+ b2Q)b2Φ

+2s(b2Q+ s)Ψ1∆
]
σ̄0uA = 0, (3.30)

and

s(b2 − s2)
[
b(ϕ− sϕ′)Φc−Ψ1σ1

]
∆uA = 0. (3.31)

It is easy to see that (3.31) is equivalent to (3.26). Further, multiplying (3.30)

with uA implies that

s(b2Q+ s)Ψ1∆σ̄0ᾱ
2 = 0. (3.32)

It is easy to see that (3.32) is equivalent to (3.28). In summary, conformally

flat (α, β)-metrics with relatively isotropic mean Landsberg curvature satisfy

(3.26) and (3.28). According to (3.28), we have some cases as follows:
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Case (i): If b2Q+ s = 0, then we have

ϕ = κ
√
b2 − s2,

which is a contradiction with the assumption of cubic metric. Then we have

b2Q+ s ̸= 0.

Case (ii): If Ψ1 = 0, then by Lemma 3.4, F is Riemannian.

Case (iii): If Ψ1 ̸= 0, then σA = 0. In the following, we prove that if Ψ1 ̸= 0,

then by (3.26) one can get σ1 = 0.

Now, assume that

ϕ = 3
√
a1s+ a2s3 (3.33)

here a1, a2 are numbers independent of s and ai ̸= 0, i = 1, 2. Simplifying

(3.26) and multiplying it by ∆2, we get{
[−sΦ+ (b2 − s2)Φ′]∆− 3

2
(b2 − s2)Φ∆′

}
σ1 − b∆2Φ(ϕ− sϕ′)c = 0. (3.34)

Putting (3.33) into (3.34) and multiplying it by

ϑ :=
1

27a21s
4(a2s2 + a1)3

, (3.35)

we can express the result as a polynomial of s

E15s
15 + E14s

14 + ...E1s+ E0 = 0 (3.36)

where Ei(0 ≤ i ≤ 15), are polynomials of a1, a2, b, c, and σ1. Equation (3.36)

is equivalent to the following two equations

E15s
15 + E13s

13 + ...+ E3s
3 + E1s = 0, (3.37)

E14s
14 + E12s

12 + ...+Π2s
2 + E0 = 0, (3.38)

where

E0 = 6a31b
6(35a31 + 6a21 + 40)σ1.

(3.38) implies that E0 = 0, because b ̸= 0 and a1 ̸= 0, then E0 = 0 implies that

σ1 = 0. Together with A = 0, it follows that σ is a constant, which means that

F is a locally Minkowski metric. This completes the proof. □
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