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Abstract. The class of L-reducible Finsler metric was introduced by Mat-

sumoto as a generalization of Randers metrics. One of the open problems in

Finsler Geometry is to find a L-reducible metric which is not of Randers-type.

In this paper, we are going to study 3-dimensional L-reducible metrics. Let

(M,F ) be a compact 3-dimensional L-reducible metric. Suppose that F has

constant relatively isotropic mean Landsberg curvature. Then we show that F

reduces to a Randers metric.
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1. Introduction

Randers metrics are natural non-Riemannian Finsler metrics which were in-

troduced by Norwegian Physician Gunnar Randers in order to study of general

relativity in 4-dimensional manifolds [20]. His metric is in the form

F = α + β,

where α =
√
aij(x)yiyj is gravitation field and β = bi(x)yi is the electro-

magnetic field. Randers regarded these metrics not as Finsler metrics but as

“affinely connected Riemannian metrics”, which is a rather confusing notion.

This metric was first recognized as a kind of Finsler metric in 1957 by the

Polish Physician, Roman Stanis law Ingarden, who first named them Randers
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metrics [6]. Randers metrics have been widely applied in many areas of natural

science, including Seismic Ray Theory, Biology, Physics, and etc.

An interesting reality about the Randers metrics is related to their Cartan

torsions. First, we introduce some notions and then explain the mentioned

property. Let (M,F ) be a Finsler manifold. The second derivatives of 1
2F

2
x at

y ∈ TxM0 is an inner product gy on TxM . The third order derivatives of 1
2F

2
x

at y ∈ TxM0 is a symmetric trilinear forms Cy on TxM . We call gy and Cy

the fundamental form and the Cartan torsion, respectively. Taking a trace of

C gives the mean Cartan torsion I. A Finsler metric F on an n-dimensional

manifold M is C-reducible if its Cartan torsion is give by

Cijk =
1

n + 1

{
Iihjk + Ijhik + Ikhij

}
. (1.1)

In [9], Matsumoto introduced the notion of Matsumoto torsion and proved that

any Randers metric has vanishing Matsumoto torsion. Every Finsler metric

with vanishing Matsumoto torsion is called C-reducible. Thus by Matsumoto’s

result, Randers metrics are C-reducible. Later on, Matsumoto-Hōjō proved

that the converse is true too [13]. In [16], Mo-Shen proved that every Finsler

metric of negative scalar flag curvature on a compact manifold of dimension

n ≥ 3 is a Randers metric. By using the main scalar and its derivation in

Finsler plans, Mo-Huang found a quantity that characterized Randers plans

among the Minkowski plans [15]. They pointed out that the Matsumoto tor-

sion is just the cubic form of the indicatrix with its Blaschke structure. Hence

the Matsumoto-Hōjō’s Theorem is a corollary of the Maschke-Pick-Berwald

Theorem (see page 53 in [18]). In [3], Bao-Robles-Shen showed that a Finsler

metric is of Randers type if and only if it is a solution of the navigation prob-

lem on a Riemannian manifold. Then Javaloyes-Vitório define the Matsumoto

torsion of a conic pseudo-Finsler metric and proved that a conic pseudo-Finsler

manifold of dimension at least 3 is of pseudo-Randers-Kropina type if and

only if its Matsumoto tensor vanishes identically [7]. Recently, Yan give some

new characterizations of Randers norms by proving a maximum property of

Randers norms and some integral inequalities on the indicatrix [25]. In [13],

Matsumoto-Hōjō proved that a Finsler metric F is C-reducible if and only if

it is a Randers metric or an almost regular Finsler metric, namely Kropina

metric.

The rate of change of Cy along geodesics is the Landsberg curvature Ly

on TxM for any y ∈ TxM0. F is said to be Landsbergian if L = 0. Taking

a trace of L give us mean Landsberg curvature J. A Finsler metric F on an

n-dimensional manifold M is L-reducible if its Landsberg curvature is give by

Lijk =
1

n + 1

{
Jihjk + Jjhik + Jkhij

}
. (1.2)
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By taking a horizontal derivation from (1.1), one can get (1.2). Thus every

C-reducible metric is L-reducible. But the converse may not true in general.

There are some other generalization of C-reducible metrics, namely general-

ized P-reducible metrics. A Finsler metric F is called generalized P-reducible

if its Landsberg curvature is given by following

Lijk = λCijk + aihjk + ajhki + akhij ,

where λ = λ(x, y) is a scalar function on TM , ai = ai(x) is scalar function on

M and hij = gij − F−2yiyj is the angular metric. λ and ai are homogeneous

function of degree 1 and degree 0 with respect to y, respectively. The class

of generalized P-reducible metrics was introduced by Prasad in [19]. In [24],

Tayebi-Sadeghi characterized generalized P-reducible (α, β)-metrics with van-

ishing S-curvature and proved the following.

Theorem A. ([24]) Let F = αϕ(s), s = β/α, be an (α, β)-metric on a man-

ifold M . Suppose that F is a generalized P-reducible metric with vanishing

S-curvature. Then F is a Berwald metric or C-reducible metric.

By Theorem A, it follows that there is no concrete P-reducible (α, β)-metric

with vanishing S-curvature. For more information about the class of (α, β)-

metrics, see [5], [12], [21] and [23].

In [17], Moór constructed an intrinsic orthonormal frame field on three di-

mensional Finsler manifolds which was a generalization of the Berwald frame

of two-dimensional Finsler manifolds. Then, Matsumoto gave a systematic de-

scription of a general theory of 3-dimensional Finsler spaces based on Moór’s

frame, that is, on a frame whose first vector is the normalized supporting el-

ement and the second one is taken as the normalized torsion vector [10][11].

In addition to three main scalars and nine scalars representing the curvature

tensor, he introduces two important vector fields, called h-connection and v-

connection vectors. He proved that a non-Riemannian Berwald 3-space is char-

acterized by the fact that the h-connection vector hi vanishes and the main

scalars H, I, J are h-covariant constant.

In [4], Beizavi studied the class of L-reducible metrics with relatively isotropic

mean Landsberg curvature and proved the following.

Theorem B. ([4]) Let (M,F ) be a 3-dimensional L-reducible Finsler man-

ifold such that bi = bi(x, y) is constant along Finslerian geodesics. Suppose

that F has relatively isotropic mean Landsberg curvature

J = cF I, (1.3)

where c = c(x) is a scalar function on M . Then one of the following holds
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(1) F is a Randers metric;

(2) F is a Landsberg metric;

In this paper, we are going to find a condition under which a L-reducible

Finsler metric reduces to a C-reducible metric, or equivalently a Randers metric

by Matsumoto-Hōjō Theorem. Then, we prove the following.

Theorem 1.1. Let (M,F ) be a compact 3-dimensional L-reducible manifold.

Suppose that F has non-zero constant relatively isotropic mean Landsberg cur-

vature

J = cF I,

where c is a real constant. Then F is a Randers metric.

It is easy to see that every L-reducible Finsler metric with vanishing mean

Landsberg curvature (c = 0) reduces to a Landsberg metric.

2. Preliminaries

A Finsler metric on M is a function F : TM → [0,∞) which has the following

properties:

(i) F is C∞ on TM0 := TM \ {0};

(ii) F is positively 1-homogeneous on the fibers of tangent bundle TM ;

(iii) for each y ∈ TxM , the following quadratic form gy : TxM × TxM → R on

TxM is positive definite,

gy(u, v) :=
1

2

[
F 2(y + su + tv)

]
|s,t=0, u, v ∈ TxM.

Let x ∈ M . To measure the non-Euclidean feature of Fx := F |TxM , define

Cy : TxM × TxM × TxM → R by

Cy(u, v, w) :=
1

2

d

dt

[
gy+tw(u, v)

]
|t=0, u, v, w ∈ TxM.

The family C := {Cy}y∈TM0 is called the Cartan torsion. It is well known that

C=0 if and only if F is Riemannian.

For y ∈ TxM0, define mean Cartan torsion Iy by Iy(u) := Ii(y)ui, where

Ii := gjkCijk

and u = ui ∂
∂xi |x. By Diecke Theorem, a positive-definite Finsler metric F is

Riemannian if and only if Iy = 0 (see [8]).

For a non-zero vector y ∈ TxM0, one can define the Matsumoto torsion

My : TxM ⊗ TxM ⊗ TxM → R by My(u, v, w) := Mijk(y)uivjwk where

Mijk := Cijk − 1

n + 1

{
Iihjk + Ijhik + Ikhij

}
,
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and

hij := FFyiyj = gij −
1

F 2
gipy

pgjqy
q

is the angular metric. A Finsler metric F is said to be C-reducible if My = 0.

This quantity is introduced by Matsumoto [9]. Matsumoto proves that every

Randers metric satisfies that My = 0. A Randers metric F = α + β on a

manifold M is just a Riemannian metric α =
√
aijyiyj perturbated by a one

form β = bi(x)yi on M such that ∥β∥α < 1. Later on, Matsumoto-Hōjō proves

that the converse is true too.

Lemma 2.1. ([13]) A Finsler metric F on a manifold of dimension n ≥ 3 is a

Randers metric if and only if My = 0, ∀y ∈ TM0.

The horizontal covariant derivatives of C along geodesics give rise to the

Landsberg curvature Ly : TxM ⊗ TxM ⊗ TxM → R defined by Ly(u, v, w) :=

Lijk(y)uivjwk, where

Lijk := Cijk|sy
s,

u = ui ∂
∂xi |x, v = vi ∂

∂xi |x and w = wi ∂
∂xi |x (see [2]). The family L :=

{Ly}y∈TM0 is called the Landsberg curvature. A Finsler metric is called a

Landsberg metric if L = 0. The quantity L/C is regarded as the relative

rate of change of C along geodesics. Then F is said to be relatively isotropic

Landsberg metric if

L = cFC,

for some scalar function c = c(x) on M .

The horizontal covariant derivatives of I along geodesics give rise to the

mean Landsberg curvature Jy(u) := Ji(y)ui, where

Ji := gjkLijk.

A Finsler metric is called a weakly Landsberg metric if J = 0. The quantity

J/I is regarded as the relative rate of change of I along geodesics. Then F is

said to be relatively isotropic mean Landsberg metric if

J = cF I,

for some scalar function c = c(x) on M .

Let us consider the following Randers metric on R2

F =

√
(1 − ϵ2)(xu + yv)2 + ϵ(u2 + v2)(1 + ϵ(x2 + y2))

1 + ϵ(x2 + y2)
+

√
1 − ϵ2(xu + yv)

1 + ϵ(x2 + y2)
,

where 0 < ϵ ≤ 1 is a real number. By calculation, we get J + cF I = 0, where

c =

√
1 − ϵ2

2(ϵ + x2 + y2)
.
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3. L-Reducible Finsler Metrics

In [17], Moór introduced a special orthonormal frame field (ℓi,mi, ni) in the

three dimensional Finsler space. The first vector of the frame is the normalized

supporting element, the second is the normalized mean Cartan torsion vector,

and third is the unit vector orthogonal to them. Let (M,F ) be a 3-dimensional

Finsler manifold. Suppose that ℓi := Fyi is the unit vector along the element

of support, mi is the unit vector along mean Cartan torsion Ii, i.e.,

mi :=
1

||I||
Ii,

where ||I|| :=
√
IiIi and ni is a unit vector orthogonal to the vectors ℓi and

mi. Then the triple (ℓi,mi, ni) is called the Moór frame.

For 3-dimensional Finsler manifolds, we have

gij = ℓiℓj + mimj + ninj .

Thus

gij = ℓiℓj + mimj + ninj . (3.1)

Then the Cartan torsion of F is written as follows

FCijk = Hmimjmk − J
{
mimjnk + mjmkni + mkminj − ninjnk

}
+I

{
ninjmk + njnkmi + ninkmj

}
, (3.2)

where H, I and J are called the main scalars of F . Thus multiplying (3.2)

with (3.1) implies that

FIk = (H + I)mk. (3.3)

In [22], Tayebi-Najafi obtained the following.

Lemma 3.1. ([22]) Let (M,F ) be a 3-dimensional non-Riemannian Finsler

manifold. Then the Cartan torsion of F is given by following

Cijk =
{
aihjk + ajhki + akhij

}
+
{
biIjIk + IibjIk + IiIjbk

}
, (3.4)

where ai = ai(x, y) and bi = bi(x, y) are scalar functions on tangent bundle

TM and given by

ai :=
1

3F

[
3Imi + J ni

]
, bi :=

F

3(H + I)2

[
(H− 3I)mi − 4J ni

]
. (3.5)

By (3.5), one can see that

aiy
i = biy

i = 0.

Throughout this paper, we assume that H + I ≠ 0. By (3.3), we assume that

F is not Riemannian in this paper.
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By taking a horizontal derivation of (3.4), one can get the Landsberg cur-

vature of 3-dimensional Finsler manifolds, as follows.

Lemma 3.2. Let (M,F ) be a 3-dimensional Finsler manifold. Then the Lands-

berg curvature of F is given by following

Lijk = −1

2

{
Jmbm + b′mIm

}{
Iihjk + Ijhki + Ikhij

}
+

1

4

{
Jihjk + Jjhki + Jkhij

}
+
{
b′iIjIk + b′jIiIk + b′kIiIj

}
−1

4

{
ImJm + JmIm

}{
bihjk + bjhki + bkhij

}
−bmIm

2

{
Jihjk + Jjhki + Jkhij

}
− ||I||2

4

{
b′ihjk + b′jhki + b′khij

}
+
{
bi(JjIk + IjJk) + bj(JiIk + IiJk) + bk(JiIj + IiJj)

}
, (3.6)

where b′i := bi|sy
s.

In [22], Tayebi-Najafi characterized 3-dimensional non-Riemannian almost

regular Landsberg (α, β)-metrics as follows.

Theorem C. ([22]) Every 3-dimensional non-Riemannian almost regular Lands-

berg (α, β)-metric F = αϕ(s), s = β/α, belongs to the one of the following three

classes of Finsler metrics:

(1) F is a Berwald metric. In this case, F is a Randers metric or a Kropina

metric;

(2) ϕ is given by the ODE

ϕ4−4c(ϕ− sϕ′)4−c
[
ϕ− sϕ′ + (b2 − s2)ϕ′′

]−c

= ek0 , (3.7)

where c is a nonzero real constant, k0 is a real number and b := ||β||α. In this

case, F is a Berwald metric (regular case) or an almost regular unicorn.

In [1], Amini study the weakly Landsberg 3-dimensional Finsler metrics and

prove the following.

Theorem C. ([1]) Let (M,F ) be a non-Riemannian 3-dimensional weakly

Landsberg manifold. Then F is a Landsberg metric if and only if the quantity

bi = bi(x, y) is horizontally constant along Finsler geodesics.
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As a generalization of C-reducible metrics, Matsumoto-Shimada introduced

the notion of L-reducible (P-reducible) metrics [14]. This class of Finsler met-

rics has some interesting physical and mathematical means and contains Ran-

ders metrics as a special case [24]. Here, we consider 3-dimensional L-reducible

Finsler metrics and prove the following.

Lemma 3.3. Let (M,F ) be a 3-dimensional Finsler manifold. Suppose that

F is L-reducible. Then F satisfies following

2bmJmIk − 2bmImJk − 2JmImbk − ||I||2b′k = 0. (3.8)

Proof. Let F be a L-reducible metric

Lijk =
1

4

{
hijJk + hjkJi + hkiJj

}
. (3.9)

Then (3.6) reduces to following

||I||2
{
b′ihjk + b′jhki + b′khij

}
− 4

{
bi(JjIk + IjJk) + bj(JiIk + IiJk)

+bk(JiIj + IiJj)
}

+ 2
(
bmJm + b′mIm

){
Iihjk + Ijhki + Ikhij

}
+2ImJm

{
bihjk + bjhki + bkhij

}
− 4

{
b′iIjIk + b′jIiIk + b′kIiIj

}
+2bmIm

{
Jihjk + Jjhki + Jkhij

}
= 0. (3.10)

Multiplying (3.10) with Ii yields

||I||2
{
b′pI

phjk + b′jIk + b′kIj

}
− 4

{
bpI

p(JjIk + IjJk) + bj(JpI
pIk + ||I||2Jk)

+bk(JpI
pIj + ||I||2Jj)

}
+ 2

(
bmJm + b′mIm

){
||I||2hjk + 2IjIk

}
+2ImJm

{
bpI

phjk + bjIk + bkIj

}
− 4

{
b′pI

pIjIk + ||I||2b′jIk + ||I||2b′kIj
}

+2bmIm
{
JpI

phjk + JjIk + JkIj

}
= 0. (3.11)

Contracting (3.11) with Ij implies (3.8). □

Remark 3.4. The horizontal derivation of Moór frame are giving by following

ℓi|j = 0, mi|j = hjni, ni|j = −hjmi,

where hi are called the h-connection vectors. Thus

m′
i := mi|jy

j = h0ni, n′
i := ni|jy

j = −h0mi,

where h0 := hiy
i.

Now, by taking a horizontal derivation of (3.3), we get

FJk = (H′ + I ′)mk + (H + I)h0nk. (3.12)
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Let us put

B1 :=
1

3F ||I||2
(
H− 3I

)
,

B2 :=
−4

3F ||I||2
J ,

Then, (3.5) can be written as follows

bi = B1mi + B2ni.

Let us put

P1 :=
1

3F ||I||4
[
(H′ − 3I ′)||I||2 + 4J h0||I||2 − 2ImJm(H− 3I)

]
,

P2 :=
1

3F ||I||4
[
(H− 3I)||I||2h0 − 4||I||2J ′ + 8ImJmJ

]
.

Then

b′i = P1mi + P2ni.

By (3.12), we get

bsJ
s =

1

F

[
(H′ + I ′)B1 + (H + I)h0B2

]
,

bsI
s =

1

F
B1

(
H + I

)
,

JmIm =
1

F 2

(
H′ + I ′

)(
H + I

)
,

ImIm =
1

F 2

(
H + I

)2

,

Then

P1 =
1

3F 3||I||4

[
(H′ − 3I ′)(H + I)2 + 4J (H + I)2h0

−2(H′ + I ′)(H + I)(H− 3I)

]
,

P2 =
1

3F 3||I||4

[
(H− 3I)(H + I)2h0 − 4(H + I)2J ′

+8(H′ + I ′)(H + I)J

]
.
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By putting the above relations in (3.8), we get

2

F 2

[
(H′ + I ′)B1 + (H + I)h0B2

]
(H + I)mk

− 1

F 2
(H + I)2(P1mk + P2nk)

− 2

F 2
B1(H + I)

[
(H′ + I ′)mk + (H + I)h0nk

]
− 2

F 2
(H′ + I ′)(H + I)(B1mk + B2nk) = 0. (3.13)

Since (H + I) ̸= 0, then by contracting (3.13) with mk and nk, we get the

following

2(H′ + I ′)B1 − 2(H + I)h0B2 + (H + I)P1 = 0, (3.14)

and

2(H + I)h0B1 + 2(H′ + I ′)B2 + (H + I)P2 = 0. (3.15)

Then we conclude the following.

Proposition 3.5. Let (M,F ) be a 3-dimensional L-reducible Finsler manifold.

Then F satisfies (3.8) if and only if it satisfies (3.14) and (3.15).

Here, we prove an extension of Theorem 1.1. More precisely, we prove the

following.

Theorem 3.6. Let (M,F ) be a complete 3-dimensional L-reducible manifold

with bounded main scalars. Suppose that F has constant relatively isotropic

mean Landsberg curvature

J = cF I,

where c is a non-zero real constant. Then F is a Randers metric.

Proof. Now, let F has constant relatively isotropic mean Landsberg curvature

J = cF I, where c is a real number. Then (3.8) reduces to following

b′k + 2cFbk = 0. (3.16)

On Finslerian geodesics, (3.16) is written as follows

b′ + 2cb = 0. (3.17)

The solution of (3.17) is

b(t) = e−2ctb(0). (3.18)

Since the main scalars are bounded then ||b|| < ∞. Thus letting t → ∞ implies

that b = 0. In this case, (3.4) reduces to following

Cijk =
{
aihjk + ajhki + akhij

}
. (3.19)
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Contracting (3.19) with gij yields

ak =
1

n + 1
Ik. (3.20)

Putting (3.20) in (3.19) implies that F is C-reducible. By Matsumoto-Hōjō’s

Lemma, F is a Randers metric. □
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