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1. Introduction

Locally projectively flat Finsler metrics are interesting Finsler metrics that

have the regular solution to Hilbert’s fourth problem on a convex domain in

Rn[8]. Recently, many mathematicians (geometers) have studied the character-

ization and construction of locally projectively flat Finsler metrics [3, 9, 10, 12,

15]. For example, Z. Shen investigated the necessary and sufficient for (α, β)-

metrics to be projectively flat apart from some special cases. In [5], it is shown

that a Randers metric F = α + β is locally projectively flat if and only if α

is locally projectively flat and β is closed. According to Beltrami’s Theorem,

every Riemannian metrics of constant curvature is locally projectively flat and

converse. But in Finsler metric every locally projectively flat Finsler metric

is of scalar flag curvature and the converse is not true. For example, Randers

metrics with constant flag curvature 1 are non-locally projectively flat [3].

A Randers metric F (x, y) = α(x, y) + β(x, y) is a Finsler metric which have

defined as the sum of a Riemannian metric α(x, y) :=
√
aij(x)yiyj and a 1-form

β(x, y) := bi(x)y
i such that the Riemannian metric controls the related form by

||β||α < 1. The history of Randers metrics goes back to G. Randers’s research
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on general relativity of 4-dimensional Riemannian manifolds. He regarded these

metrics not as Finsler metrics, but as affinely connected Riemannian metrics.

This non-Riemannian metric was first recognized as a kind of Finsler metric

by Ingarden, who first named it Randers metric. Since then it has been widely

applied in many areas, including electron optics and biology [4]. In Finsler ge-

ometry, the class of Randers metrics is computable and this may lead to a better

understanding of non-Riemannian curvature properties of Finsler metrics.

A natural problem is to study and characterize locally projectively flat Ran-

ders metrics of constant flag curvature. In [1], Bácsó-Matsumoto proved that

a Randers metric F = α + β is locally projectively flat if and only if α is lo-

cally projectively flat and β is closed. According to the Beltrami theorem in

Riemann geometry, a Riemannian metric is locally projectively flat if and only

if it is of constant sectional curvature. Then a Randers metric F = α + β is

locally projectively flat if and only if α is of constant sectional curvature and

β is closed.

In this paper, we study locally projectively flat left-invariant Randers metrics

on simply connected three dimensional Lie group. More precisely, we prove the

following.

Theorem 1.1. Let G be a simply connected 3-dimensional Lie group. Then G

admits a left-invariant locally projectively flat Randers metric defined by the un-

derlying left-invariant Riemannian metric α and the left-invariant vector field

U , F (x, y) =
√
αx(y, y)+αx(U, y), if and only if it is one of the following cases

1) Abelian group: [X,Y ] = [Y,Z] = [Z,X] = 0 with the left-invariant Rie-

mannian metric  1 0 0

0 1 0

0 0 1


2) The solvable Lie group Ẽ0(2): [X,Y ] = Z, [Z,X] = Y , [Z, Y ] = −X with

the left invariant Riemannian metric 1 0 0

0 µ 0

0 0 ν


where µ = 1 and ν > 0;

3) The non-unimodular Lie group GI : [X,Y ] = 0, [Z,X] = X, [Z, Y ] = Y

with the left invariant Riemannian metric 1 0 0

0 1 0

0 0 ν
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where ν > 0.

2. Preliminaries

Let M be an n-dimensional smooth manifold and TM be its tangent bundle.

A Finsler metric on M is a function F : TM → [0,∞) which has the following

properties:

(i) F is smooth on TM0 := TM \ {0};
(ii) F is positively 1-homogeneous on the fibers of TM ;

(iii) for each y ∈ TxM , the following quadratic form gy : TxM × TxM → R on

TxM is positive definite

gy(u, v) :=
1

2

∂2

∂s∂t

[
F 2(y + su+ tv)

]
s,t=0

, u, v ∈ TxM.

Given a Finsler manifold (M,F ), a global vector field G is induced by F on

TM0, which in a standard coordinate (xi, yi) for TM0 is given by

G = yi
∂

∂xi
− 2Gi(x, y)

∂

∂yi
,

where Gi = Gi(x, y) are called the spray coefficients and given by following

Gi(x, y) :=
1

4
gil

{ ∂2F 2

∂xk∂yl
yk − ∂F 2

∂xl

}
.

The vector field G is called the associated spray to (M,F ).

A distance function on a set U is a function d : U×U → R with the following

properties

(a) d(p, q) ≥ 0 and equality holds if and only if p = q;

(b) d(p, q) ≤ d(p, r) + d(r, q).

A distance function on a convex domain U ⊂ Rn is said to be projective (or

rectilinear) if straight lines are the shortest paths. Hilbert’s Fourth Problem is

to characterize projective distance functions.

A distance function d on a manifold M is said to be smooth if it is induced

by a Finsler metric F on M ,

d(p, q) := inf
c

∫ 1

0

F (ċ(t))dt,

where the infimum is taken over all curves c(t), 0 ≤ t ≤ 1, joining p = c(0) to

q = c(1).

Now we start to discuss smooth projective distance functions or projective

Finsler metrics on an open domain U ⊂ Rn. First, let us use the following

notations. The local coordinates of a tangent vector y = yi ∂
∂xi |p ∈ TxU will

be denoted by (x, y). Hence all quantities are functions of (x, y) ∈ U × Rn. It
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is known that a Finsler metric F = F (x, y) on U is projective if and only if its

geodesic coefficients Gi are in the form

Gi(x, y) = P (x, y)yi,

where P : TU = U × Rn → R is positively homogeneous with degree one,

P (x, λy) = λP (x, y), λ > 0. We call P (x, y) the projective factor of F (x, y).

Two Finsler metrics F and F̄ on a manifold M are called projectively related

if any geodesic of the first is also geodesic for the second and vice versa.

For a non-zero vector y ∈ TxM0, define Dy : TxM × TxM × TxM → TxM

by Dy(u, v, w) := Di
jkl(y)u

ivjwk ∂
∂xi |x, where

Di
jkl :=

∂3

∂yj∂yk∂yl

[
Gi − 2

n+ 1

∂Gm

∂ym
yi

]
. (2.1)

The quantity D is called the Douglas curvature of F . Then F is called a

Douglas metric if it satisfies D = 0.

3. Proof of Theorem 1.1

In this section, we are going to prove Theorem 1.1. For this aim, we re-

mark a theorem of Ha-Lee. In [7] Ha-Lee studied 3-dimensional Lie algebra.

They classified the Left-invariant Riemannian metrics on simply connected 3-

dimensional Lie groups in [7]. If {X,Y, Z} is a basis for a Lie algebra then it

is isomorphic to one of the following Lie algebras

1) Abelian group:

[X,Y ] = [Y, Z] = [Z,X] = 0.

2) Nilpotent group:

[X,Y ] = Z, [Z,X] = [Z, Y ] = 0.

3) Unimodular solvable group:

(a) [X,Y ] = 0, [Z,X] = X, [Z, Y ] = Y,

or

(b) [X,Y ] = 0, [Z,X] = Y, [Z, Y ] = X.

4) Simple group:

(a) [X,Y ] = 2Z, [Z,X] = 2Y, [Z, Y ] = 2X,

or

(b) [X,Y ] = Z, [Z,X] = Y, [Z, Y ] = −X.

5) Non-unimodular solvable group:

(a) [X,Y ] = 0, [Z,X] = X, [Z, Y ] = Y,



100 M. Atashafrouz

or

(b) [X,Y ] = 0, [Z,X] = Y, [Z, Y ] = −cX + 2Y,

where c ∈ R. Every left-invariant Riemannian metric on a simply connected

3-dimensional Lie groups is affine equivalent to one of the left-invariant Rie-

mannian metric belong to Lie algebras (1− 5) introduced in [7].

Let g be a Riemannian metric on a connected Lie group G. Suppose that

φ ∈ Aut(g) with [g̃] = [φ]t[g][φ]. Let ∇ and∇̃ be the Levi-Civita connections

determined by the left-invariant metrics g and g̃, respectively, on G. Then

φ∇̃xy = ∇φxφy

Therefore, applying an automorphism on the left-invariant metric given each

case establishes a new left-invariant metric which is affinely related to the first

one.

Let G be a smooth n-dimensional connected Lie group endowed with a Rie-

mannian metric α = aijdx
i ⊗ dxj . We denote the inverse of (aij) by (aij). We

know that α induces the musical bijection between 1-forms and vector fields

on G, which is denoted by ♭ : TxG −→ T ∗
xG and given by y −→ αx(y,−). The

inverse of ♭ is denoted by ♯ : T ∗
xG −→ TxG. Suppose β = bidx

i is a 1-form on

G, in which we have used Einstein’s convention for summation. Then

(β♯ =)U = bi
∂

∂xi
,

where bi = aijbj . Consider β such that ∥β∥α :=
√
aijbibj < 1. A Randers

metric F on G is defined as follows

F (x, y) =
√

αx(y, y) + αx(U, y) ∀x ∈ M , ∀y ∈ TxM .

α(x, y) =
√
aijyiyj , β(x, y) = αx(U, y),

In order to prove Theorem 1.1, we remark a key Lemma of Yibing-Yaoyongy

in [14].

Lemma 3.1. Let F = α + β and F̄ = ᾱ + β̄ be two Randers metrics, D and

D̄ be the Douglas tensors of F andF̄ , respectively. Then D = D̄ if and only if

the following conditions are satisfied.

(1) α ̸= λ(x)ᾱ, sij = s̄ij = 0, that is, β and β̄ are closed;

(2) α = λ(x)ᾱ, sij = λ(x)s̄ij.

A Finsler metric F on a Lie group G is called left-invariant if for all a ∈ G

and Y ∈ TaG

F (a, Y ) = F (e, (La−1)∗aY ). (3.1)
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One of the main quantities in Finsler geometry is the flag curvature which is

defined as follows:

K(P, Y ) =
gY (R(U, Y )Y, U)

gY (Y, Y ).gY (U,U)− g2
Y (Y,U)

, (3.2)

where

R(U, Y )Y = ∇U∇Y Y −∇Y ∇UY −∇[U,Y ]Y,

P = span{U, Y } is a 2-plane in TxM and ∇ is the Chern connection induced

by F (for more details, see [2, 13]).

Proof of Theorem 1.1: It is known that F is locally projectively flat if and

only if α is locally projectively flat and β is closed [5]. On the other hand, we

have β(x, y) := αx(U, y) is closed if and only if ⟨U, [g,g]⟩ = 0. Therefore by

using Lema 3.1, it is enough to prove that α is locally projectively flat.

Case 1: We can consider U = ax + by + cz with
√
(U,U) < 1. In this

case, β is closed and α is locally projectively flat metric.

Case 2: Let U = az. Then β is closed. On the other hand, the sectional

curvature with µ = 1 on Ẽ0(2) are zero. Then

k(x, y) = k(y, z) = k(z, x) = 0.

Hence F is a locally projectively flat in this case F is not a non-Riemannian

Randers metric.

Case 3: Like the previous one, if we assume that U = az with
√
(U,U) < 1 .

This demonstrates β is closed. In addition the sectional curvature are

k(x, y) = k(y, z) = k(z, x) = − 1

υ
.

In other cases, since sectional curvature is not constant according to Beltrami’s

Theorem, then α is not locally projectively flat. Thus, F is not locally projec-

tively flat. This complete the proof. □

In [6], Deng-Hu give the following formula for the flag curvature of left-

invariant Randers metrics of Douglas type

K(P, y) =
α2

F 2
K̃(P ) +

1

4F 4

(
3⟨U(y, y), u⟩2 − 4F ⟨U(y, U(y, y)), u⟩

)
, (3.3)

where U : g × g → g be the bilinear symmetric map defined by

2⟨U(X,Y ), Z⟩ = ⟨[Z,X], Y ⟩+ ⟨[Z, Y ], Z⟩, ∀Z ∈ g,

u is the vector in m corresponding to the 1-form and K̃ is the sectional curvature

of α.
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Corollary 3.1. By using (3.3), one can see that there are some cases in The-

orem 1.1 which are not constant flag curvature although the sectional curvature

are constant. Therefore, Beltrami’s Theorem dose not hold for the simply con-

nected 3-dimensional Lie groups with left-invariant Randers metric.
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