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1. Introduction

A Lorentzian manifold with a parallel light-like vector field is called Brinkmann-

wave, due to [1]. A Brinkmann-wave manifold (M, g) is called pp-wave if its

curvature tensor R satisfies the trace condition tr(3,5)(4,6)(R ⊗ R) = 0. In

[2], Schimming proved that an (n + 2)-dimensional pp-wave manifold admits

coordinates (x, y1, . . . , yn, z) such that g has the form

g = 2dxdz +
∑

k=1,...,n

(dyk)
2 + f(dz)2, with ∂xf = 0. (1.1)

In [3], Leistner gave another equivalence for pp-wave manifold. More precisely,

he proved that a Brinkmann-wave manifolds (M, g) with parallel light-like vec-

tor field X and induced parallel distributions Ξ and Ξ⊥ is a pp-wave if and
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only if its curvature tensor satisfies

R(U, V ) : Ξ⊥ → Ξ, for all U, V ∈ TM, (1.2)

or equivalently R(Y1, Y2) = 0 for all Y1, Y2 ∈ Ξ⊥. From this description, it

follows that a pp-wave manifold is Ricci-isotropic, which means that the image

of the Ricci operator is totally light-like, and has vanishing scalar curvature

[3]. Furthermore, Leistner introduced a new class of non-irreducible Lorentzian

manifolds satisfying (1.2) but only for a recurrent vector field X, that is,∇X =

ω ⊗ X where ω is a one-form on M . Following [3], such manifolds are called

pr-waves. Moreover, a description in terms of local coordinates similar to the

one for pp-waves manifolds was given in [3]: a Lorentzian manifold (M, g) of

dimension n+ 2 > 2 is a pr-wave if and only if around any point o ∈ M exist

coordinates (x, y1, . . . , yn, z) in which the metric g has the following form:

g = 2dxdz +
∑

k=1,...,n

(dyk)
2 + f(dz)2,

where f is a real valued smooth function on (M, g).

In this paper, we shall investigate killing and homothetic vector fields on

the Lorentzian pr-waves three-manifolds with recurrect curvature. If (M, g)

denotes a Lorentzian manifold and T a tensor on (M, g), codifying some either

mathematical or physical quantity, a symmetry of T is a one-parameter group

of diffeomorphisms of (M, g), leaving T invariant. As such, it corresponds to a

vector field X satisfying LXT = 0, where L denotes the Lie derivative. Isome-

tries are a well known example of symmetries, for which T = g is the metric

tensor. The corresponding vector field X is then a Killing vector field. Ho-

motheties and conformal motions on (M, g) are again examples of symmetries.

(see, for example, [[4], [5], [6], [7], [8], [9]] and references therein).

2. Killing and homothetic vector fields of pr-wave three-manifold

We first classify Killing and homothetic and affine vector fields of (M, g).

The classifications we obtain are summarized in the following theorem. Put

fx := ∂xf, fy := ∂yf and fz := ∂zf .

Theorem 1. Let X = X1∂x+X2∂y +X3∂z be an arbitrary vector field on the

three-dimensional pr-wave manifold (M, g). Then

(i) X is a Killing vector field if and only if

X1 = −f
′

1(z)y − f
′

2(z)x+ f3(z), X2 = f1(z), X3 = f2(z). (2.1)

where fi(z) are arbitrary smooth functions on M , satisfying

2f
′

2(z)f − 2f
′′

1 (z)y − 2f
′′

2 (z)x+ 2f
′

3(z) + (f3(z)− f
′

1(z)y

−f
′

2(z)x)fx + f3(z)fy + f2(z)fz = 0. (2.2)
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(ii) X is a homothetic, non-Killing vector field if and only if

X1 = −f
′

1(z)y + (η − f
′

2(z))x+ f3(z), X2 =
1

2
ηy + f1(z), X3 = f2(z).

where η ̸= 0 is a real constant and

− ηf + 2f
′

2(z)f − 2f
′′

1 (z)y − 2f
′′

2 (z)x+ 2f
′

3(z) + (f3(z)− f
′

1(z)y + (η − f
′

2(z))x)fx

+ (
1

2
ηy + f3(z))fy + f2(z)fz = 0.

Proof. We start from an arbitrary smooth vector fieldX = X1∂x+X2∂y+X3∂z
on the three-dimensional pr-wave manifold (M, g), and calculate LXg. we

assume ∂x = ∂1, ∂y = ∂2, ∂z = ∂3. With regard to

(LXg)µν = Xi∂igµν + giν∂µX
i + gµi∂νX

i,

We have

(LXg)11 = Σ3
i=1(X

i∂ig11 + gi1∂1X
i + g1i∂1X

i)

= X1∂1g11 + g11∂1X
1 + g11∂1X

1 +X2∂2g11 + g21∂1X
2 + g12∂1X

2

+X3∂3g11 + g31∂1X
3 + g13∂1X

3

= 2∂1X
3,

(LXg)12 = Σ3
i=1(X

i∂ig12 + gi2∂1X
i + g1i∂2X

i)

= X1∂1g12 + g12∂1X
1 + g11∂2X

1 +X2∂2g12 + g22∂1X
2 + g12∂2X

2

+X3∂3g12 + g32∂1X
3 + g13∂2X

3

= ∂1X
2 + ∂2X

3,

(LXg)13 = Σ3
i=1(X

i∂ig13 + gi3∂1X
i + g1i∂3X

i)

= X1∂1g13 + g13∂1X
1 + g11∂3X

1 +X2∂2g13 + g23∂1X
2 + g12∂3X

2

+X3∂3g13 + g33∂1X
3 + g13∂3X

3

= ∂1X
1 + f∂1X

3 + ∂3X
3,

By following this process we get

LXg = 2∂1X
3dxdx+ 2(∂1X

2 + ∂2X
3)dxdy + 2(∂1X

1 + f∂1X
3 + ∂3X

3)dxdz + 2∂2X
2dydy

+ 2(∂2X
1 + ∂3X

2 + f∂2X
3)dydz + (X1∂1f + 2∂3X

1 +X2∂2f +X3∂3f + 2f∂3X
3)dzdz,

Then, X satisfies LXg = ηg for some real constant η if and only if the following

system of partial differential equations is satisfied:

∂1X
3 = 0, ∂2X

2 =
η

2
, ∂1X

2 + ∂2X
3 = 0, ∂1X

1 + f∂1X
3 + ∂3X

3 = η, (2.3)

∂2X
1 + ∂3X

2 + f∂2X
3 = 0, X1∂1f + 2∂3X

1 +X2∂2f +X3∂3f + 2f∂3X
3 = ηf.
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We then proceed to integrate (2.3). From the first three equations in (2.3) we

get

X2 =
η

2
y − f1(z)x+ f3(z), X3 = f1(z)y + f2(z).

Then, the fourth equation in 2.3 yields

X1 = f
′

5(z)xy + f
′

6(z)x+ f4(x, y),

f1(z) = −f5(z) + c1,

f2(z) = −f6(z) + ηz + c2.

Where c1 and c2 are real constants. substituting this into the fifth equation,

we have

(−f5(z) + c1)f + 2f
′

5(z)x+ f
′

3(z) + ∂yf4(x, y) = 0.

Then, we have

f3(z) = −f6(z)y + c1,

f4(x, y) = f
′

6(z)y + f7(z),

f5(z) = c1

Now, the last equation in (2.3) gives

− ηf + 2f
′

2(z)f − 2f
′′

1 (z)y − 2f
′′

2 (z)x+ 2f
′

3(z) + (−f
′

1(z)y + (η − f
′

2(z))x+ f3(z))fx

+ (
1

2
ηy + f3(z))fy + f2(z)fz = 0.

So, we have

X1 = −f
′

1(z)y + (η − f
′

2(z))x+ f3(z),

X2 =
1

2
ηy + f1(z),

X3 = f2(z).

This proves the statement i) in the case η = 0 and the statement ii) if we

assume η ̸= 0. □

Example 2. The functions in equation 2.2 for the killing vector fields on the

three-dimensional pr-wave manifold produce a various family of killing vector

fields on the three-dimensional pr-wave manifold. for example, let f(x, y, z) =

x, we have

f
′

2(z)x− 2f
′′

1 (z)y − 2f
′′

2 (z)x+ 2f
′

3(z)− f
′

1(z)y + f3(z) = 0.

Therefore,

f3(z) =

(∫
(
1

2
f

′

2(z)x+ f
′′

1 (z)y + f
′′

2 (z)x− 1

2
f

′

1(z)y)e
1
2 zdz + c1

)
e−

1
2 z.

where c1 and c2 are real constants.
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Now, with the arbitrary selection for function f1(z) and f2(z), killing vector

fields are generated, which is a special example as follows:

f1(z) = f2(z) = 2e−
1
2 z.

So, we have

f3(z) = (yz + c1)e
− 1

2 z.

In a special case, it can be assumed c1 = 0. Hence,

f3(z) = e−
1
2 zyz.

Therefore,

X1 = −2e−
1
2 zy − 2e−

1
2 zx+ e−

1
2 zyz,

X2 = X3 = 2e−
1
2 z.
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