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Abstract. Z. Shen proved that Finsler manifold with unbounded Cartan torsion can not

be isometrically imbedded into any Minkowski space. This shows that the norm of Cartan

torsion of Finsler metrics has an essential role for studying of immersion theory in Finsler

geometry. In this paper, we study the norm of Cartan torsion of Ingarden-Támassy and

Arctangent Finsler metrics that are special (α, β)-metrics.
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1. Introduction

It is a fundamental problem in Finsler geometry is whether or not every

Finsler manifold can be isometrically immersed into a Minkowski space. This

problem under some conditions was considered by Burago-Ivanov, Gu and In-

garden for Finsler metrics (see [3][6][7][8][11]). In [15], Shen showed that Finsler

manifold with unbounded Cartan torsion can not be isometrically imbedded

into any Minkowski space. Thus the norm of Cartan torsion plays an impor-

tant role for studying of immersion theory in Finsler geometry. For a Finsler

manifold (M,F ), the second and third order derivatives of 1
2F

2
x at y ∈ TxM0

are fundamental form gy and the Cartan torsion Cy on TxM , respectively. The

Cartan torsion was first introduced by Finsler [5] and emphased by Cartan [4].

For the Finsler metric F , one can defines the norm of the Cartan torsion C as
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follows

||C|| = sup
F (y)=1,v ̸=0

|Cy(v, v, v)|
[gy(v, v)]

3
2

.

The bound for two dimensional Randers metrics F = α + β is verified by

Lackey [1]. Then, Shen showed that the Cartan torsion of Randers metrics on

a manifold M of dimension n ≥ 3 is uniformly bounded by 3/
√
2 [14]. The class

of Randers metrics form a natural and important class of Finsler metrics which

are defined by F = α+β, where α =
√
aij(x)yiyj is a Riemmanian metric and

β = bi(x)y
i is a 1-form on a manifold M . They were derived from the research

on the general relativity and have been widely applied in many areas of natural

science (see [1], [12] and [13]). It is remarkable that Randers metrics can be

naturally deduced as solutions of the Zermelo navigation problem [2]. In [11],

Mo-Zhou extend his result to a general Finsler metrics, F = (α+ β)m/αm−1

(m ∈ [1, 2]).

All of above metrics are special Finsler metrics so- called (α, β)-metrics.

An (α, β)-metric is a Finsler metric on M defined by F := αϕ(s), s = β/α,

where ϕ = ϕ(s) is a C∞ function on the (−b0, b0) with certain regularity,

α =
√

aij(x)yiyj is a Riemannian metric and β = bi(x)y
i is a 1-form on M .

Recently, Tayebi-Sadeghi found a relation between the norm of Cartan and

mean Cartan torsions of Finsler metrics defined by a Riemannian metric and

a 1-form on a manifold [17]. They proved the following.

Theorem 1.1. (Tayebi-Sadeghi [17]) Let F = αϕ(s) be a non-Riemannian

(α, β)-metric on a manifold M of dimension n ≥ 3. Then the norm of Cartan

and mean Cartan torsion of F satisfy in following relation

∥C∥ =

√
3p2 + 6p q + (n+ 1)q2

n+ 1
∥I∥, (1.1)

where p = p(x, y) and q = q(x, y) are scalar function on TM satisfying p+q = 1

and given by following

p =
n+ 1

aA

[
s(ϕϕ′′ + ϕ′ϕ′)− ϕϕ′

]
(1.2)

a := ϕ{ϕ− sϕ′} (1.3)

A = (n− 2)
sϕ′′

ϕ− sϕ′ − (n+ 1)
ϕ′

ϕ
− −3sϕ′′ + (b2 − s2)ϕ′′′

ϕ− sϕ′ + (b2 − s2)ϕ′′ . (1.4)

Also, they consider a subclass of (α, β)-metrics which have the following

form

F =
αm+1

βm
, (m ̸= 0)

and called by generalized Kropina metric [10]. Then we prove the following.

Theorem 1.2. (Tayebi-Sadeghi [17]) Suppose that F = αm+1/βm be a gen-

eralized Kropina metric on a manifold M . Then the Cartan torsion of F is
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bounded. More precisely, the following holds

∥C∥ =
(2m+ 1)√
m(m+ 1)

.

In [18], Tayebi-Sadeghi considered the class of generalized Randers metrics

and proved the following.

Theorem 1.3. (Tayebi-Sadeghi [18]) Let F =
√
c1α2 + 2c2αβ + c3β2 be the

generalized Randers metric on a manifold M , where α =
√
aij(x)yiyj is a

Riemannian metric, β = bi(x)y
i is an 1-form on M with ∥β∥α < 1 and c1, c2

and c3 are real constants such that 0 < 3c2 < c3 < c1. Then F has bounded

Cartan torsion and

||C|| < 3

2

c2(c1 + 2c2 + c3)
2

c1(c1 − 3c2)
3
2

. (1.5)

Then they showed the following.

Theorem 1.4. (Tayebi-Sadeghi [18]) Let F = c1α+c2β+c3β
2/α be an (α, β)-

metric on a manifold M , where α :=
√

aij(x)yiyj is a Riemannian metric,

β := bi(x)y
i is an 1-form on M with ∥β∥α < 1 and c1, c2 and c3 are real

constants such that 0 < c2 < c1 and 0 < 2c3 < c1. Then F has bounded Cartan

torsion and

||C|| < 3

2

(
8c23 + c1c2 + 4c23 + 2c2c3 + 5c2c3

)
(c1 − 2c3)

3
2 (c1 − c2)

1
2

. (1.6)

In this paper, we consider two special (α, β)-metrics. First, we study the

Ingarden-Támassy metric

F = α+
β2

α
, (1.7)

where α =
√
aij(x)yiyj is a Riemannian metric and β = bi(x)y

i is a 1-form

on M . It is remarkable that, this metric was introduced by R. Ingarden and

S. Tamássy in [9], when they were studying physical applications of Finsler

metrics in electron optic and thermodynamic. Then the Finsler metric (1.7) is

called the Ingarden-Tamássy metric.

In [16], Shen-Yildirim studied a class of special (α, β)-metrics F = αϕ(s),

s = β/α, where ϕ = ϕ(s) satisfies

ϕ− sϕ′ = (p+ rs2)ϕ′, (1.8)

where p and r are constants. They found a sufficient condition for F to be pro-

jectively flat in a local coordinate system (xi), that is, the covariant derivatives

bi|j with respect to α, and the spray coefficients of Gi
α of α satisfy

bi|j = 2τ
{
(p+ b2)aij + (r − 1)bibj

}
,

Gi
α = θyi − τα2bi,
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τ = τ(x) is a scalar function and θ = ti(x)y
i is a 1-form on the manifold M .

In (1.8), if we put p = 1/2 and r = 1/2 then we get the arctangent metric

F = α+ β arctan

(
β

α

)
+ ϵβ. (1.9)

2. Ingarden-Támassy Metric F = α+ β2/α

Let F = α+β2/α be the Ingarden-Támassy metric on a manifold M , where

α =
√
aijyiyj is a Riemmannian metric and β = bi(x)y

i is a 1-form on M

such that ∥β∥α < 1. Let us first assume that dimM = 2. There exists a local

orthonormal basis {e1, e2} for (M,α) such that for an arbitrary tangent vector

y = ue1 + ve2 ∈ TpM we have

β(ue1 + ve2) = ku,

where k = ∥β∥α < 1. Then

F (ue1 + ve2) =
√
u2 + v2 +

k2u2

√
u2 + v2

.

Assume that y⊥ ∈ TpM satisfies

gy(y, y
⊥) = 0, gy(y

⊥, y⊥) = F 2. (2.1)

Obviously y⊥ is unique because the metric is non-degenerate. The frame

{y, y⊥} is called the Berwald frame. Now, let y = r cos θe1 + r sin θe2, i.e.

u = r cos θ and v = r sin θ. Plugging these in (2.1) and computing by Maple

program yields

y⊥ =

r

(
sin θ(k2 cos2 θ − 1), cos θ(k2 cos2 θ − 2k2 − 1)

)
√
−(3k2 cos2 θ − 2k2 − 1)(k2 cos2 θ + 1)

(2.2)

By the definition of the bound of Cartan torsion, it is easy to show that for the

Berwald frame ∥C∥p = supy∈TpM0
ξ(p, y), where

ξ(p, y) :=
F (p, y)|Cy(y

⊥, y⊥, y⊥)|
|gy(y

⊥, y⊥)| 32
. (2.3)

By (2.1) we obtain

ξ(p, y) :=
|Cy(y

⊥, y⊥, y⊥)|
F 2(p, y)

.

Computing by Maple program, one gets

ξ(p, y) :=
6k4 sin θ cos θ(2 cos2 θ − 1)√

−(3k2 cos2 θ − 2k2 − 1)3(1 + k2 cos2 θ)
. (2.4)
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Define two functions on (0, 1)× [−1, 1] by following

f(k, x) := −(1 + k2x2)(3k2x2 − 2k2 − 1)3,

g(k, x) :=
6k4x

√
1− x2(2x2 − 1)

f(k, x)
1
2

.

Hence ∥C∥p = max0≤θ≤2π|g(k, cos θ)|. For a fixed k = k0 we obtain

∂

∂x
f(k0, x) = −4k2x(6k2x2 − k2 + 4)(3k2x2 − 2k2 − 1)2,

Because 0 < k < 1 we conclude f(k0, x) is ascending on [−1, 0] and is descend-

ing on [0, 1], then f(k0, 0) is a maximum point for f(k0, x) where x ∈ [−1, 1].

Moreover f is an even function that is symmetric with respect to y-axis. So

for x ∈ [−1, 1] we have

f(k0, 1) = f(k0,−1) ≤ f(k0, x) ≤ f(k0, 0)

Then

(1 + k20)(1− k20)
3 ≤ f(k0, x) ≤ (2k20 + 1)3 < 33.

So for k ∈ (0, 1), we have

|g(k, cos θ)| = 6k4 cos θ
√
1− cos2 θ(2 cos2 θ − 1)

|f(k, cos θ)| 12
<

6√
(1 + k2)(1− k2)3

.

Therefore

∥C∥p = max0≤θ≤2π|g(k, cos θ)| <
6√

(1 + k2)(1− k2)3
.

3. Arctangent Metric F = α+ β arctan(β/α) + ϵβ

Let F = α + β arctan β
α + ϵβ be an (α, β)-metric on a manifold M , where

α =
√
aijyiyj is a Riemmannian metric, β = bi(x)y

i is a 1-form onM such that

∥β∥α < 1 and ϵ is a positive real constant. Let us first assume that dimM = 2.

There exists a local orthonormal basis {e1, e2} for (M,α) such that for an

arbitrary tangent vector y = ue1 + ve2 ∈ TpM we have β(ue1 + ve2) = ku,

where k = ∥β∥α < 1. Then

F (ue1 + ve2) =
√

u2 + v2 + ku arctan
ku√

u2 + v2
+ ϵku.

Assume that y⊥ ∈ TpM satisfies gy(y, y
⊥) = 0 and gy(y

⊥, y⊥) = F 2. Obvi-

ously y⊥ is unique because the metric is non-degenerate. The frame {y, y⊥} is

called the Berwald frame. Now let y = r cos θe1 + r sin θe2, i.e. u = r cos θ and

v = r sin θ. Plugging these in (2.1) and computing by Maple program yields

y⊥ =
r(λ, µ)√

−(k2 cos2 θ − 2k2 − 1)(k cos θ arctan(k cos θ) + ϵk cos θ + 1)
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where

λ := − sin θ,

µ := k3 cos2 θ arctan(k cos θ) + ϵk3 cos2 θ + k2 cos θ + k arctan(k cos θ) + cos θ + ϵk.

By the definition of the bound of Cartan torsion, it is easy to show that for the

Berwald frame ∥C∥p = supy∈TpM0ξ(p, y), where

ξ(p, y) :=
F (p, y)|Cy(y

⊥, y⊥, y⊥)|
|gy(y

⊥, y⊥)| 32
.

By (2.1) we obtain

ξ(p, y) :=
|Cy(y

⊥, y⊥, y⊥)|
F 2(p, y)

.

Computing by Maple program, one gets

ξ(p, y) := −1

2

kη sin θ√
−(k2 cos2 θ − 2k2 − 1)3(k cos θ arctan(k cos θ) + ϵk cos θ + 1)

.

(3.1)

where

η := k4 cos4 θ arctan(k cos θ) + ϵk4 cos4 θ + 2k4 cos2 θ arctan(k cos θ) + 2ϵk4 cos2 θ

+k3 cos3 θ + 6k2 cos2 θ arctan(k cos θ) + 6ϵk2 cos2 θ + 2k3 cos θ − 6k2 arctan(k cos θ)

+3k cos θ − 3 arctan(k cos θ)− 6ϵk2 − 3ϵ.

Define two functions on (0, 1)× [−1, 1] by following

f(k, x) := −(kx arctan(kx) + ϵkx+ 1)(k2x2 − 2k2 − 1)3,

g(k, x) := − 1

2f(k, x)
1
2

(
k
√

1− x2(k4x4 arctan(kx) + ϵk4x4 + 2k4x2 arctan(kx) + 2ϵk4x2

+k3x3 + 6k2x2 arctan(kx) + 6ϵk2x2 + 2k3x− 6k2 arctan(kx) + 3kx

−3 arctan(kx)− 6ϵk2 − 3ϵ)

)
.

Hence ∥C∥p = max0≤θ≤2π|g(k, cosθ)|. If 0 ≤ x ≤ 1, then we have 0 ≤
arctan(kx) ≤ π

2 . It follows that

0 ≤ kx arctan(kx) ≤ k arctan(kx) ≤ k
π

2
.

So, we get

1 ≤ 1 + ϵkx ≤ kx arctan(kx) + ϵkx+ 1 ≤ k
π

2
+ 1 + ϵkx ≤ k

π

2
+ 1 + ϵk. (3.2)

For −1 ≤ x ≤ 0 we have

−π

2
≤ arctan(kx) ≤ 0.

Then

0 ≤ kx arctan(kx) ≤ −k arctan(kx) ≤ k
π

2
.



72 T. Rajabi

Similarly above we obtain

1− ϵ < 1− ϵk ≤ kx arctan(kx) + ϵkx+ 1 ≤ k
π

2
+ 1.

Because of −1 ≤ x ≤ 1 we conclude that

(k2 + 1)3 ≤ −(k2x2 − 2k2 − 1)3 ≤ (2k2 + 1)3.

Then f > (1− ϵ)(k2 + 1)3. So for k ∈ (0, 1) we have

|g(k, cos θ)| <
6( 3π2 + 3ϵ+ 1)

|1− ϵ|(k2 + 1)3
<

6( 3π2 + 3ϵ+ 1)

|1− ϵ|
.

Therefore

∥C∥p = max0≤θ≤2π|g(k, cos θ)| <
6( 3π2 + 3ϵ+ 1)

|1− ϵ|
.
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