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ABSTRACT. In this paper, we study generalized symmetric («, 8)—spaces. We prove that
generalized symmetric (o, 8)—spaces with Matsumoto metric, infinite series metric and ex-

ponential metric are Riemannian.
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1. INTRODUCTION

The notion of symmetric spaces is due to Cartan. Later, Kowalski [6] defined
generalized symmetric spaces or regular s—spaces following the introduction of
s—manifolds in [8, 9]. Generalized symmetric Finsler spaces are a natural
generalization of generalized symmetric spaces and they keep many of their
properties [5, 10] . Let (M, F) be a connected Finsler manifold. A symmetry
at € M is an isometry of (M, F') for which z is an isolated fixed point. A
s—structure on (M, F) is a family {s;}zem such that s, is a symmetry at
x € M, for each x € M. An s—structure is called regular if for any two points
z,y €M

S5 08y =85,08z, 2=55(y).

An s—structure {s, },enr is called of order k if (s,)* = idys for all z € M and
k is the minimal number with this property. It is well known that if (M, F)
admits an s—structure, then it always admits an s—structure of finite order.
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In particular if (M, F) admits an s—structure of order two then it is a usual
symmetric Finsler space.

An (a, 8)—metric is a Finsler metric of the form F = a¢(s), s = g where
a = y/a;;(z)y'y’ is induced by a Riemannian metric a = a@;;dz’ ® dz7 on a
connected smooth n—dimensional manifold M and 8 = b;(x)y* is a 1—form on
M. Some important classes of («, 8)—metrics are Randers metric F' = a + §,
Matsumoto metric F' = ﬁ, infinite series metic F' = 5[3_—2& and exponential
B
)
(o7

In this paper, we study generalized symmetric Finsler spaces with Mat-

metric F' = avexp(

sumoto metric, infinite series metric and exponential metric.

2. PRELIMINARIES

Let M be a smooth n—dimensional C'*° manifold and T M be its tangent
bundle. A Finsler metric on a manifold M is a non-negative function F :
TM — R with the following properties [2]:

(1) F is smooth on the slit tangent bundle TM° := TM \ {0}.
(2) F(xz,\y) = A\F(z,y) for any € M, y € T, M and X > 0.
(3) The following bilinear symmetric form g, : T,M x T, M — R is

positive definite
1 9*
gy(u,v) = 3 asatF (,y + su+tv)|s=t—0-

Definition 2.1. Let o = 1/a;j(z)y’y? be a norm iduced ba a Riemannian
metric @ and B3(x,y) = b;(z)y* be a 1—form on an n—dimensional manifold M.

Let
[B(2)lla = y/a (x)bi(2)b; (). (2.1)

Now, let the function F' is defined as follows

F:=ag¢(s) , s= g, (2.2)

where ¢ = ¢(s) is a positive C>° function on (—bg, by) satisfying
B(s) —s¢'(s) + (b* — s*)¢"(s) >0 , |s| <b < bo. (2.3)

Then by lemma 1.1.2 of [3], F' is a Finsler metric if || 3(z)||o < bo for any z € M.
A Finsler metric in the form (2.2) is called an (o, 8)—metric [1, 3].

A Finsler space having the Finsler function:

o?(z,y)

Flzx,y) = ————=—— 24
0= ) - Bay) 24
is called a Matsumoto space.
A Finsler space having the Finsler function:
B (z,y

ﬁ(z,y) - OL(I,y)
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is called a Finsler space with an infinite series (o, §)—metric.
A Finsler space having the Finsler function:

B(x,y)
oz, y)

Fz,y) = a(z,y) exp( ) (2.6)

is called a Finsler space with an exponential metric («, §)—metric.

The Riemannian metric a induces an inner product on any cotangent space
T M such that (dx'(x),dz’ (z)) = a*(x). The induced inner product on T M
induces a linear isomorphism between T M and T, M. Then the 1-form S
corresponds to a vector field X on M such that

a(y, X (x)) = Bz, y). (2.7)
Also we have ||3(z)||o = || X(2)||la . Therefore we can write (c, §)—metrics as
follows:
_ (X (x),y)
F(z,y) = a(x,y)ﬁb(W% (2.8)

where for any = € M, y/a(X(z), X(z)) = || X(2)||a < bo . Symmetric Finsler
spaces form a natural extension to the symmetric spaces of Cartan. A symmet-
ric Finsler spaces is a Finsler space (M, F') such that for all p € M there exist
an involutive isometry s, € M such that p is an isolated fixed point of s, [4, 7].
Generalized symmetric Finsler spaces were introduced as generalization of gen-
eralized symmetric spaces [5]. A Finsler space (M, F') is said to be symmetric
space if for any point p € M there exist an involutive isometry s, of (M, F)
such that p is an isolated fixed point of (M, F) . Let (M, F) be a connected
Finsler space. An isometry s, of (M, F) for which x € M is an isolated fixed
point will be called a symmetry of M at z.

An s—structure on (M, F') is a family {s,|x € M} of symmetries of (M, F').
The corresponding tensor field S of type (1,1) defined by S, = (s;). for each
x € M is called the symmetry tensor field of s—structure [6, 5].

Definition 2.2. An s—structure {s,|z € M} on a Finsler space (M, F) is said
to be regular if it satisfies the rule

Sp 08y =8,08;, 2Z=52(Yy)

for every two points z,y € M.

3. GENERALIZED SYMMETRIC («, /5) SPACES

Lemma 3.1. Let (M, F) be a generalized symmetric Matsumoto space with F
defined by the Riemannian metric a and the vector field X. Then the regular
s—structure {sy} of (M, F) is also a regular s—structure of the Riemannian
manifold (M, a).
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Proof. Let s, be a symmetry of (M, F) at z and p € M. Then forany Y € T,M
we have

F(p.Y) = Flsu(p),dsa(Y))
a(Y,Y) a(ds,;Y,ds,Y)
VAl Y) —a(X,.Y)  Ja(ds,Y,dsyY) — (X, (), ds,Y)
Applying the above equation to —Y, we get
a(Y,Y) _ a(ds,Y,ds;Y)

a(Y,Y) +a(X,,Y) a(ds, Y, ds,Y) + (X, (), ds.Y)

x

Combining the above two equations, we get

aY,Y) = a(ds,Y,ds,Y)
a(Xp,Y) = a(Xs,(p),ds.Y).
Thus s, is a symmetry with respect to the Riemannian metric a. ]

Lemma 3.2. Let (M,a) be a generalized symmetric Riemannian space. Also
suppose that F is a Matsumoto metric introduced by a and a vector field X.
Then the reqular s—structure {s,} of (M,a) is also a regular s—structure of
(M, F) if and only if X is s,—invariant for all x € M.

Proof. Let X be s;—invariant. Therefore for any p € M, we have X, (,) =
dsz Xp. Then for any y € T, M we have

a(ds.Yp, ds.yp)

V a(d3$y7 dsat?-/) - a(XSx(p)v ds.xy)

F(sﬁ(p)adsryp) =

_ a(y,y)
a(y,y) — a(ds, Xy, dsyy)
_ a(y,y)
Valy,y) —a(X,,y)

= F(py)

Conversely, let s, be a symmetry of (M, F) at . Then for any p € M and
y € T, M we have

F(p,y) = F(sz(p),dszy)
a(y,y) _ a(dsayp, dsayp) _
a(y,y) — a(Xyp,y) Valdszy, dszy) — a(Xs, (p), dszy)

So we have
a(dsz Xp — X5, (p)> d52Yyp) = 0.
Therefore ds, X, = X;_p)- O
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Theorem 3.3. A generalized symmetric Matsumoto space must be Riemann-
1an.

Proof. Let (M, F') be a generalized symmetric Matsumoto space with F' defined
by the Riemannian metric @ and the vector field X, and let {s,} be the regular
s—structure of (M, F'). Let s, be a symmetry of (M, F). Then by lemma 3.1,
Sy 1s also a symmetry of (M, a). Thus we have

a(dsgy, dszy)

Fz,ds.(y)) =

a(y, y)
a(y,y) — a(Xa, dsgy)
= F(z,y).
Therefore a(X,,ds,y) = a(Xy,y), Yy € T, M. Since z is an isolated fixed
point of the symmetry s,, the tangent map S, = (ds.). is an orthogonal

transformation of T, M having no nonzero fixed vectors. So we have a(X, (S—
id)z(y)) =0, Vy € T, M. Since (S —id), is an invertible linear transformation,
we have X, =0, Vx € M. Hence F is Riemannian. O

Lemma 3.4. Let (M, F) be a generalized symmetric Finsler space with infinite
series metric F' = % defined by the Riemannian metric a and the vector field
X. Then the reqular s—structure {s,} of (M, F) is also a regular s—structure
of the Riemannian manifold (M,a).

Proof. Let s, be a symmetry of (M, F) at z and let p € M. Then for any
Y € T,M we have
F(p,Y) = F(sz(p),ds(Y)).
Applying equation (2.5) we get
a(X,, Y)? _ A(Xs, (p): d52Y)°

a(X,,Y) —a(Y)Y)  a(Xs, ), dsY) — a(ds,Y,ds,Y)’

which implies

a(Xp, Y)2a(Xs, (), dsoY) — a(X,p, Y)?\/a(ds, Y, ds,Y)
= A Xs, () d52Y) 20X, Y) — A X, ), dsaY)*Va(YY). (3.1
Applying the above equation to —Y, we get
A(Xp, Y)?a( X, (), dssY) + (X, Y)?Valds, Y, ds,Y)
= a(X,, () d5:Y)2a(Xp, Y) + a( X, (), ds:Y)2Va(Y,Y).  (3.2)
Adding equations (3.1) and (3.2), we get
a(Xp,Y) = a(Xs, (p), dszY). (3.3)
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Subtracting equation (3.2) from equation (3.1) and using equation (3.3), we
get
a(Y,Y) = a(ds,Y, ds,Y).

Therefore s, is a symmetry with respect to the Riemannian metric a. O

Lemma 3.5. Let (M,a) be a generalized symmetric Riemannian space. Also
suppose that F is an infinite series metric defined by a and a vector field X .
Then the reqular s—structure {s,} of (M,a) is also a regular s—structure of
(M, F) if and only if X is s—invariant for all x € M.

Proof. Let X be s;—invariant. Therefore for any p € M, we have X, (,) =
dsz Xp. Then for any y € T, M we have
a(Xs, (p)s ds,Y)?
a(Xs, (p), dszY) — v/a(ds,Y,ds,Y)
a(ds, Xp, ds;Y)?
a(dsz Xp,ds,Y) — v/a(ds,Y,ds,Y)

F(Sw (p), dswyp) =

_ a(X,,Y)?
CalX,,Y) - Vayy)
= F(p,Y).

Conversely, let s, be a symmetry of (M, F) at . Then for any p € M and
y € T, M we have
F(p,Y) F(s:(p),ds.Y).
a(X,,Y)? a( Xy, (p), dsgY)?
a(X,,Y) — /a(Y,Y) a( Xy, (p): ds:Y) — \/a(ds, Y, ds,Y)’

which implies

a(Xp, Y)a( X, (), dsaY) — a(X,, Y)*Va(Y,Y)
= (X, dseY)?a(X,,Y) = a(Xs, (), dsaY ) Va(YY).  (34)
Replacing Y by —Y in equation (3.4), we get
a(Xp, Y)2a( X, (), dsaY) + a(X,, Y)*Va(Y,Y)
= a(X,, (), d5:Y)2a(Xp, Y) + a( X, (), ds:Y)?Va(Y,Y).  (3.5)
Subtracting equation (3.5) from equation (3.4) we get
a(X,,Y) = a(X, (), ds.Y).
Therefore (ds;)pXp = X

s2(p) -

Theorem 3.6. A generalized symmetric infinite series («, 3)—space must be
Riemannian.
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Proof. Let (M, F) be a generalized symmetric Finsler space with infinite series
metric F' = ﬁﬁfza defined by the Riemannian metric a and the vector field X
and let {s,} be the regular s—structure of (M, F'). Let s, be a symmetry of
(M, F). Then by lemma 3.4, s, is also a symmetry of (M, a). Thus we have

_ ~(Xwad5x( ))2
Flz,ds.(y)) = a(Xy,ds:(y \/a ds.(y),ds.(y))
a(Xx,dsx( ))?
d(vadSw(y)) - d(yvy)

= Fz,y).
Therefore a(Xy,ds;z(y)) = a(Xy,y), Yy € T, M. Since x is an isolated fixed
point of the symmetry s,, the tangent map S, = (ds.). is an orthogonal

transformation of T, M having no nonzero fixed vectors. So we have
a(Xz, (S —id),(y)) =0, Yy e T, M.

Since (S —id), is an invertible linear transformation, we have X, = 0, Vz € M.
Hence F' is Riemannian. g

Lemma 3.7. Let (M, F) be a generalized symmetric Finsler space with ex-
ponential metric F = aexp(g) defined by the Riemannian metric a and the
vector field X. Then the regular s—structure {s,} of (M, F) is also a reqular
s—structure of the Riemannian space (M, a).

Proof. Let s, be a symmetry of (M, F) and let p € M. Therefore for every
Y € T,M we have F(p,Y) = F(s,(p),ds;Y). Applying equation (2.6) we get

a(X,,Y) (X, (), dssY)
va(Y,Y)exp \/7) a(ds,Y,ds, Y )exp(—d(dst,dszY))- (3.6)

Replacing Y by —Y in equation 3.6 we get

—a(X, . ds.Y
Va(Y,Y) exp(— a(X, Y) a(ds;Y,ds;Y) exp( X, ), d5aY)

Va a(ds,Y,ds,Y)

Combining the above equatlons (3.6) and (3.7) we have
2a(X 2a(X,, (p), dszY)

). (3.7)

»Y)

Ja(Y,Y) ) = e ,/a(dsxy ds,Y)

d(Xp, Y) _ d(st(p)7 dszY)
Va,Y)  Va(ds,Y,ds,Y)
From equation (3.6) and (3.8), we have

a(Y,Y) = a(ds,Y, ds,Y).

),

exp(

which implies

Therefore s, is a symmetry with respect to the Riemannian metric a. (I
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Lemma 3.8. Let (M,a) be a generalized symmetric Riemannian space. Let
F be a exponential metric defined by a and a vector field X. Then the regular
s—structure {s,} of (M,a) is also a regular s—structure of (M, F) if and only
if X is sp—invariant for all x € M.

Proof. Let X be s;—invariant. Therefore for any p € M, we have X, (,) =

dsz Xp. Then for any Y € T, M we have

a/(st(p)7 deY)
a(ds.Y,ds, Y)

a Y, Y
Va(ds,Y,ds,Y) exp(w)

a(ds,Y,ds, Y)

A exp( X&)

a(y,v)

F(sy(p),ds;Y,) = a(ds,Y,ds,;Y') exp( )

= F(p, Y)

Conversely, let s, be a symmetry of (M, F) at . Then for any p € M and
y € T,M we have F(p,Y) = F(s,(p),ds;Y). Applying the theorem 3.7 we get

EL(XP,Y) o d(Xsl,(p),dst)

VaYY)  \Ja(ds,Y,ds,Y) (3.9)
which implies
a(Y,Y) = a(ds,Y,ds,Y). (3.10)
From equation (3.9) and (3.10), we have
a(X.,Y) = &(st(p), ds;Y).
Therefore (dsz )X, = X, (p)- O

Theorem 3.9. A generalized symmetric exponential metric space must be Rie-
mannian.

Proof. The proof is similar to the above cases. O
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