DOI: 10.22098/jfga.2020.1009

On generalized symmetric Finsler spaces with some special $(\alpha,\beta)-$ metrics

M. Z. Laki a*

^aDepartment of Mathematics, University of Mohaghegh Ardabili p.o.box. 5619911367, Ardabil-Iran.

E-mail: miladzeinali@uma.ac.ir

ABSTRACT. In this paper, we study generalized symmetric (α, β) -spaces. We prove that generalized symmetric (α, β) -spaces with Matsumoto metric, infinite series metric and exponential metric are Riemannian.

Keywords: (α, β) —metric, generalized symmetric space, Matsumoto metric, infinite series metric, exponential metric.

1. Introduction

The notion of symmetric spaces is due to Cartan. Later, Kowalski [6] defined generalized symmetric spaces or regular s-spaces following the introduction of s-manifolds in [8, 9]. Generalized symmetric Finsler spaces are a natural generalization of generalized symmetric spaces and they keep many of their properties [5, 10]. Let (M, F) be a connected Finsler manifold. A symmetry at $x \in M$ is an isometry of (M, F) for which x is an isolated fixed point. A s-structure on (M, F) is a family $\{s_x\}_{x \in M}$ such that s_x is a symmetry at $x \in M$, for each $x \in M$. An s-structure is called regular if for any two points $x, y \in M$

$$s_x \circ s_y = s_z \circ s_x, \quad z = s_x(y).$$

An s-structure $\{s_x\}_{x\in M}$ is called of order k if $(s_x)^k = id_M$ for all $x\in M$ and k is the minimal number with this property. It is well known that if (M,F) admits an s-structure, then it always admits an s-structure of finite order.

AMS 2020 Mathematics Subject Classification: 53C60, 53C35.

^{*}Corresponding Author

In particular if (M, F) admits an s-structure of order two then it is a usual symmetric Finsler space.

An (α, β) -metric is a Finsler metric of the form $F = \alpha \phi(s)$, $s = \frac{\beta}{\alpha}$ where $\alpha = \sqrt{\tilde{a}_{ij}(x)y^iy^j}$ is induced by a Riemannian metric $\tilde{a} = \tilde{a}_{ij}dx^i \otimes dx^j$ on a connected smooth n-dimensional manifold M and $\beta = b_i(x)y^i$ is a 1-form on M. Some important classes of (α, β) -metrics are Randers metric $F = \alpha + \beta$, Matsumoto metric $F = \frac{\alpha^2}{(\alpha - \beta)}$, infinite series metric $F = \frac{\beta^2}{\beta - \alpha}$ and exponential metric $F = \alpha \exp(\frac{\beta}{\alpha})$

In this paper, we study generalized symmetric Finsler spaces with Matsumoto metric, infinite series metric and exponential metric.

2. Preliminaries

Let M be a smooth n-dimensional C^{∞} manifold and TM be its tangent bundle. A Finsler metric on a manifold M is a non-negative function $F: TM \longrightarrow R$ with the following properties [2]:

- (1) F is smooth on the slit tangent bundle $TM^0 := TM \setminus \{0\}$.
- (2) $F(x, \lambda y) = \lambda F(x, y)$ for any $x \in M$, $y \in T_x M$ and $\lambda > 0$.
- (3) The following bilinear symmetric form $g_y:T_xM\times T_xM\longrightarrow R$ is positive definite

$$g_y(u,v) = \frac{1}{2} \frac{\partial^2}{\partial s \partial t} F^2(x, y + su + tv)|_{s=t=0}.$$

Definition 2.1. Let $\alpha = \sqrt{\tilde{a}_{ij}(x)y^iy^j}$ be a norm iduced ba a Riemannian metric \tilde{a} and $\beta(x,y) = b_i(x)y^i$ be a 1-form on an n-dimensional manifold M. Let

$$\|\beta(x)\|_{\alpha} := \sqrt{\tilde{a}^{ij}(x)b_i(x)b_j(x)}.$$
(2.1)

Now, let the function F is defined as follows

$$F := \alpha \phi(s) \quad , \quad s = \frac{\beta}{\alpha},$$
 (2.2)

where $\phi = \phi(s)$ is a positive C^{∞} function on $(-b_0, b_0)$ satisfying

$$\phi(s) - s\phi'(s) + (b^2 - s^2)\phi''(s) > 0 \quad , \quad |s| \le b < b_0.$$
 (2.3)

Then by lemma 1.1.2 of [3], F is a Finsler metric if $\|\beta(x)\|_{\alpha} < b_0$ for any $x \in M$. A Finsler metric in the form (2.2) is called an (α, β) -metric [1, 3].

A Finsler space having the Finsler function:

$$F(x,y) = \frac{\alpha^2(x,y)}{\alpha(x,y) - \beta(x,y)}$$
(2.4)

is called a Matsumoto space.

A Finsler space having the Finsler function:

$$F(x,y) = \frac{\beta^2(x,y)}{\beta(x,y) - \alpha(x,y)}$$
 (2.5)

is called a Finsler space with an infinite series (α, β) -metric.

A Finsler space having the Finsler function:

$$F(x,y) = \alpha(x,y) \exp(\frac{\beta(x,y)}{\alpha(x,y)})$$
 (2.6)

is called a Finsler space with an exponential metric (α, β) -metric.

The Riemannian metric \tilde{a} induces an inner product on any cotangent space T_x^*M such that $\langle dx^i(x), dx^j(x) \rangle = \tilde{a}^{ij}(x)$. The induced inner product on T_x^*M induces a linear isomorphism between T_x^*M and T_xM . Then the 1-form β corresponds to a vector field \tilde{X} on M such that

$$\tilde{a}(y, \tilde{X}(x)) = \beta(x, y). \tag{2.7}$$

Also we have $\|\beta(x)\|_{\alpha} = \|\tilde{X}(x)\|_{\alpha}$. Therefore we can write (α, β) -metrics as follows:

$$F(x,y) = \alpha(x,y)\phi(\frac{\tilde{a}(\tilde{X}(x),y)}{\alpha(x,y)}), \tag{2.8}$$

where for any $x\in M$, $\sqrt{\tilde{a}(\tilde{X}(x),\tilde{X}(x))}=\|\tilde{X}(x)\|_{\alpha}< b_0$. Symmetric Finsler spaces form a natural extension to the symmetric spaces of Cartan. A symmetric Finsler spaces is a Finsler space (M,F) such that for all $p\in M$ there exist an involutive isometry $s_p\in M$ such that p is an isolated fixed point of s_p [4, 7]. Generalized symmetric Finsler spaces were introduced as generalization of generalized symmetric spaces [5]. A Finsler space (M,F) is said to be symmetric space if for any point $p\in M$ there exist an involutive isometry s_p of (M,F) such that p is an isolated fixed point of (M,F). Let (M,F) be a connected Finsler space. An isometry s_x of (M,F) for which $x\in M$ is an isolated fixed point will be called a symmetry of M at x.

An s-structure on (M, F) is a family $\{s_x | x \in M\}$ of symmetries of (M, F). The corresponding tensor field S of type (1,1) defined by $S_x = (s_x)_x$ for each $x \in M$ is called the symmetry tensor field of s-structure [6, 5].

Definition 2.2. An s-structure $\{s_x|x\in M\}$ on a Finsler space (M,F) is said to be regular if it satisfies the rule

$$s_x \circ s_y = s_z \circ s_x, \quad z = s_x(y)$$

for every two points $x, y \in M$.

3. Generalized symmetric (α, β) spaces

Lemma 3.1. Let (M, F) be a generalized symmetric Matsumoto space with F defined by the Riemannian metric \tilde{a} and the vector field X. Then the regular s-structure $\{s_x\}$ of (M, F) is also a regular s-structure of the Riemannian manifold (M, \tilde{a}) .

Proof. Let s_x be a symmetry of (M, F) at x and $p \in M$. Then for any $Y \in T_pM$ we have

$$\begin{array}{rcl} F(p,Y) & = & F(s_x(p),ds_x(Y)) \\ \frac{\tilde{a}(Y,Y)}{\sqrt{\tilde{a}(Y,Y)} - \tilde{a}(X_p,Y)} & = & \frac{\tilde{a}(ds_xY,ds_xY)}{\sqrt{\tilde{a}(ds_xY,ds_xY)} - \tilde{a}(X_{s_x(p)},ds_xY)}. \end{array}$$

Applying the above equation to -Y, we get

$$\frac{\tilde{a}(Y,Y)}{\sqrt{\tilde{a}(Y,Y)}+\tilde{a}(X_p,Y)} = \frac{\tilde{a}(ds_xY,ds_xY)}{\sqrt{\tilde{a}(ds_xY,ds_xY)}+\tilde{a}(X_{s_x(p)},ds_xY)}.$$

Combining the above two equations, we get

$$\tilde{a}(Y,Y) = \tilde{a}(ds_xY, ds_xY)$$

 $\tilde{a}(X_p, Y) = \tilde{a}(X_{s_x(p)}, ds_xY).$

Thus s_x is a symmetry with respect to the Riemannian metric \tilde{a} .

Lemma 3.2. Let (M, \tilde{a}) be a generalized symmetric Riemannian space. Also suppose that F is a Matsumoto metric introduced by \tilde{a} and a vector field X. Then the regular s-structure $\{s_x\}$ of (M, \tilde{a}) is also a regular s-structure of (M, F) if and only if X is s_x -invariant for all $x \in M$.

Proof. Let X be s_x -invariant. Therefore for any $p \in M$, we have $X_{s_x(p)} = ds_x X_p$. Then for any $y \in T_p M$ we have

$$\begin{split} F(s_x(p),ds_xy_p) &= \frac{\tilde{a}(ds_xy_p,ds_xy_p)}{\sqrt{\tilde{a}(ds_xy,ds_xy)} - \tilde{a}(X_{s_x(p)},ds_xy)} \\ &= \frac{\tilde{a}(y,y)}{\sqrt{\tilde{a}(y,y)} - \tilde{a}(ds_xX_p,ds_xy)} \\ &= \frac{\tilde{a}(y,y)}{\sqrt{\tilde{a}(y,y)} - \tilde{a}(X_p,y)}. \\ &= F(p,y) \end{split}$$

Conversely, let s_x be a symmetry of (M, F) at x. Then for any $p \in M$ and $y \in T_pM$ we have

$$\begin{array}{ccc} F(p,y) & = & F(s_x(p),ds_xy) \\ \frac{\tilde{a}(y,y)}{\sqrt{\tilde{a}(y,y)}-\tilde{a}(X_p,y)} & = & \frac{\tilde{a}(ds_xy_p,ds_xy_p)}{\sqrt{\tilde{a}(ds_xy,ds_xy)}-\tilde{a}(X_{s_x(p)},ds_xy)}. \end{array}$$

So we have

$$\tilde{a}(ds_x X_p - X_{s_x(p)}, ds_x y_p) = 0.$$

Therefore $ds_x X_p = X_{s_x(p)}$.

Theorem 3.3. A generalized symmetric Matsumoto space must be Riemannian.

Proof. Let (M, F) be a generalized symmetric Matsumoto space with F defined by the Riemannian metric \tilde{a} and the vector field X, and let $\{s_x\}$ be the regular s-structure of (M, F). Let s_x be a symmetry of (M, F). Then by lemma 3.1, s_x is also a symmetry of (M, \tilde{a}) . Thus we have

$$F(x, ds_x(y)) = \frac{\tilde{a}(ds_x y, ds_x y)}{\sqrt{\tilde{a}(ds_x y, ds_x y)} - \tilde{a}(X_x, ds_x y)}$$

$$= \frac{\tilde{a}(y, y)}{\sqrt{\tilde{a}(y, y)} - \tilde{a}(X_x, ds_x y)}$$

$$= F(x, y).$$

Therefore $\tilde{a}(X_x,ds_xy)=\tilde{a}(X_x,y),\ \forall y\in T_xM$. Since x is an isolated fixed point of the symmetry s_x , the tangent map $S_x=(ds_x)_x$ is an orthogonal transformation of T_xM having no nonzero fixed vectors. So we have $\tilde{a}(X_x,(S-id)_x(y))=0,\ \forall y\in T_xM$. Since $(S-id)_x$ is an invertible linear transformation, we have $X_x=0,\ \forall x\in M$. Hence F is Riemannian.

Lemma 3.4. Let (M, F) be a generalized symmetric Finsler space with infinite series metric $F = \frac{\beta^2}{\beta - \alpha}$ defined by the Riemannian metric \tilde{a} and the vector field X. Then the regular s-structure $\{s_x\}$ of (M, F) is also a regular s-structure of the Riemannian manifold (M, \tilde{a}) .

Proof. Let s_x be a symmetry of (M, F) at x and let $p \in M$. Then for any $Y \in T_pM$ we have

$$F(p,Y) = F(s_x(p), ds_x(Y)).$$

Applying equation (2.5) we get

$$\frac{\tilde{a}(X_p,Y)^2}{\tilde{a}(X_p,Y)-\sqrt{\tilde{a}(Y,Y)}} = \frac{\tilde{a}(X_{s_x(p)},ds_xY)^2}{\tilde{a}(X_{s_x(p)},ds_xY)-\sqrt{\tilde{a}(ds_xY,ds_xY)}},$$

which implies

$$\tilde{a}(X_{p},Y)^{2}\tilde{a}(X_{s_{x}(p)},ds_{x}Y) - \tilde{a}(X_{p},Y)^{2}\sqrt{\tilde{a}(ds_{x}Y,ds_{x}Y)}$$

$$= \tilde{a}(X_{s_{x}(p)},ds_{x}Y)^{2}\tilde{a}(X_{p},Y) - \tilde{a}(X_{s_{x}(p)},ds_{x}Y)^{2}\sqrt{\tilde{a}(Y,Y)}.$$
(3.1)

Applying the above equation to -Y, we get

$$\tilde{a}(X_{p},Y)^{2}\tilde{a}(X_{s_{x}(p)},ds_{x}Y) + \tilde{a}(X_{p},Y)^{2}\sqrt{\tilde{a}(ds_{x}Y,ds_{x}Y)}$$

$$= \tilde{a}(X_{s_{x}(p)},ds_{x}Y)^{2}\tilde{a}(X_{p},Y) + \tilde{a}(X_{s_{x}(p)},ds_{x}Y)^{2}\sqrt{\tilde{a}(Y,Y)}.$$
(3.2)

Adding equations (3.1) and (3.2), we get

$$\tilde{a}(X_p, Y) = \tilde{a}(X_{s_x(p)}, ds_x Y). \tag{3.3}$$

Subtracting equation (3.2) from equation (3.1) and using equation (3.3), we get

$$\tilde{a}(Y,Y) = \tilde{a}(ds_xY,ds_xY).$$

Therefore s_x is a symmetry with respect to the Riemannian metric \tilde{a} .

Lemma 3.5. Let (M, \tilde{a}) be a generalized symmetric Riemannian space. Also suppose that F is an infinite series metric defined by \tilde{a} and a vector field X. Then the regular s-structure $\{s_x\}$ of (M, \tilde{a}) is also a regular s-structure of (M, F) if and only if X is s_x -invariant for all $x \in M$.

Proof. Let X be s_x —invariant. Therefore for any $p \in M$, we have $X_{s_x(p)} = ds_x X_p$. Then for any $y \in T_p M$ we have

$$\begin{split} F(s_x(p),ds_xY_p) &= \frac{\tilde{a}(X_{s_x(p)},ds_xY)^2}{\tilde{a}(X_{s_x(p)},ds_xY) - \sqrt{\tilde{a}(ds_xY,ds_xY)}} \\ &= \frac{\tilde{a}(ds_xX_p,ds_xY)^2}{\tilde{a}(ds_xX_p,ds_xY) - \sqrt{\tilde{a}(ds_xY,ds_xY)}} \\ &= \frac{\tilde{a}(X_p,Y)^2}{\tilde{a}(X_p,Y) - \sqrt{\tilde{a}(Y,Y)}} \\ &= F(p,Y). \end{split}$$

Conversely, let s_x be a symmetry of (M, F) at x. Then for any $p \in M$ and $y \in T_pM$ we have

$$\begin{array}{rcl} F(p,Y) & = & F(s_x(p),ds_xY). \\ \\ \frac{\tilde{a}(X_p,Y)^2}{\tilde{a}(X_p,Y) - \sqrt{\tilde{a}(Y,Y)}} & = & \frac{\tilde{a}(X_{s_x(p)},ds_xY)^2}{\tilde{a}(X_{s_x(p)},ds_xY) - \sqrt{\tilde{a}(ds_xY,ds_xY)}}, \end{array}$$

which implies

$$\begin{split} &\tilde{a}(X_{p},Y)^{2}\tilde{a}(X_{s_{x}(p)},ds_{x}Y)-\tilde{a}(X_{p},Y)^{2}\sqrt{\tilde{a}(Y,Y)}\\ &=\ \tilde{a}(X_{s_{x}(p)},ds_{x}Y)^{2}\tilde{a}(X_{p},Y)-\tilde{a}(X_{s_{x}(p)},ds_{x}Y)^{2}\sqrt{\tilde{a}(Y,Y)}. \end{split} \tag{3.4}$$

Replacing Y by -Y in equation (3.4), we get

$$\begin{split} &\tilde{a}(X_{p},Y)^{2}\tilde{a}(X_{s_{x}(p)},ds_{x}Y)+\tilde{a}(X_{p},Y)^{2}\sqrt{\tilde{a}(Y,Y)}\\ &=\ \tilde{a}(X_{s_{x}(p)},ds_{x}Y)^{2}\tilde{a}(X_{p},Y)+\tilde{a}(X_{s_{x}(p)},ds_{x}Y)^{2}\sqrt{\tilde{a}(Y,Y)}. \end{split} \tag{3.5}$$

Subtracting equation (3.5) from equation (3.4) we get

$$\tilde{a}(X_p, Y) = \tilde{a}(X_{s_x(p)}, ds_x Y).$$

Therefore $(ds_x)_p X_p = X_{s_x(p)}$.

Theorem 3.6. A generalized symmetric infinite series (α, β) -space must be Riemannian.

Proof. Let (M, F) be a generalized symmetric Finsler space with infinite series metric $F = \frac{\beta^2}{\beta - \alpha}$ defined by the Riemannian metric \tilde{a} and the vector field X and let $\{s_x\}$ be the regular s-structure of (M, F). Let s_x be a symmetry of (M, F). Then by lemma 3.4, s_x is also a symmetry of (M, \tilde{a}) . Thus we have

$$F(x, ds_{x}(y)) = \frac{\tilde{a}(X_{x}, ds_{x}(y))^{2}}{\tilde{a}(X_{x}, ds_{x}(y)) - \sqrt{\tilde{a}(ds_{x}(y), ds_{x}(y))}}$$

$$= \frac{\tilde{a}(X_{x}, ds_{x}(y))^{2}}{\tilde{a}(X_{x}, ds_{x}(y)) - \sqrt{\tilde{a}(y, y)}}$$

$$= F(x, y).$$

Therefore $\tilde{a}(X_x, ds_x(y)) = \tilde{a}(X_x, y)$, $\forall y \in T_x M$. Since x is an isolated fixed point of the symmetry s_x , the tangent map $S_x = (ds_x)_x$ is an orthogonal transformation of $T_x M$ having no nonzero fixed vectors. So we have

$$\tilde{a}(X_x, (S-id)_x(y)) = 0, \ \forall y \in T_xM.$$

Since $(S-id)_x$ is an invertible linear transformation, we have $X_x=0, \forall x\in M$. Hence F is Riemannian. \square

Lemma 3.7. Let (M, F) be a generalized symmetric Finsler space with exponential metric $F = \alpha \exp(\frac{\beta}{\alpha})$ defined by the Riemannian metric \tilde{a} and the vector field X. Then the regular s-structure $\{s_x\}$ of (M, F) is also a regular s-structure of the Riemannian space (M, \tilde{a}) .

Proof. Let s_x be a symmetry of (M, F) and let $p \in M$. Therefore for every $Y \in T_pM$ we have $F(p, Y) = F(s_x(p), ds_xY)$. Applying equation (2.6) we get

$$\sqrt{\tilde{a}(Y,Y)}\exp(\frac{\tilde{a}(X_p,Y)}{\sqrt{\tilde{a}(Y,Y)}}) = \sqrt{\tilde{a}(ds_xY,ds_xY)}\exp(\frac{\tilde{a}(X_{s_x(p)},ds_xY)}{\sqrt{\tilde{a}(ds_xY,ds_xY)}}). \quad (3.6)$$

Replacing Y by -Y in equation 3.6 we get

$$\sqrt{\tilde{a}(Y,Y)}\exp(\frac{-\tilde{a}(X_p,Y)}{\sqrt{\tilde{a}(Y,Y)}}) = \sqrt{\tilde{a}(ds_xY,ds_xY)}\exp(\frac{-\tilde{a}(X_{s_x(p)},ds_xY)}{\sqrt{\tilde{a}(ds_xY,ds_xY)}}). \quad (3.7)$$

Combining the above equations (3.6) and (3.7) we have

$$\exp(\frac{2\tilde{a}(X_p,Y)}{\sqrt{\tilde{a}(Y,Y)}}) = \exp(\frac{2\tilde{a}(X_{s_x(p)},ds_xY)}{\sqrt{\tilde{a}(ds_xY,ds_xY)}}),$$

which implies

$$\frac{\tilde{a}(X_p, Y)}{\sqrt{\tilde{a}(Y, Y)}} = \frac{\tilde{a}(X_{s_x(p)}, ds_x Y)}{\sqrt{\tilde{a}(ds_x Y, ds_x Y)}}.$$
(3.8)

From equation (3.6) and (3.8), we have

$$\tilde{a}(Y,Y) = \tilde{a}(ds_xY, ds_xY).$$

Therefore s_x is a symmetry with respect to the Riemannian metric \tilde{a} .

Lemma 3.8. Let (M, \tilde{a}) be a generalized symmetric Riemannian space. Let F be a exponential metric defined by \tilde{a} and a vector field X. Then the regular s-structure $\{s_x\}$ of (M, \tilde{a}) is also a regular s-structure of (M, F) if and only if X is s_x -invariant for all $x \in M$.

Proof. Let X be s_x —invariant. Therefore for any $p \in M$, we have $X_{s_x(p)} = ds_x X_p$. Then for any $Y \in T_p M$ we have

$$F(s_x(p), ds_x Y_p) = \sqrt{\tilde{a}(ds_x Y, ds_x Y)} \exp(\frac{\tilde{a}(X_{s_x(p)}, ds_x Y)}{\sqrt{\tilde{a}(ds_x Y, ds_x Y)}})$$

$$= \sqrt{\tilde{a}(ds_x Y, ds_x Y)} \exp(\frac{\tilde{a}(ds_x Y, ds_x Y)}{\sqrt{\tilde{a}(ds_x Y, ds_x Y)}})$$

$$= \sqrt{\tilde{a}(Y, Y)} \exp(\frac{\tilde{a}(X_p, Y)}{\sqrt{\tilde{a}(Y, Y)}})$$

$$= F(p, Y).$$

Conversely, let s_x be a symmetry of (M, F) at x. Then for any $p \in M$ and $y \in T_pM$ we have $F(p, Y) = F(s_x(p), ds_xY)$. Applying the theorem 3.7 we get

$$\frac{\tilde{a}(X_p, Y)}{\sqrt{\tilde{a}(Y, Y)}} = \frac{\tilde{a}(X_{s_x(p)}, ds_x Y)}{\sqrt{\tilde{a}(ds_x Y, ds_x Y)}},$$
(3.9)

which implies

$$\tilde{a}(Y,Y) = \tilde{a}(ds_x Y, ds_x Y). \tag{3.10}$$

From equation (3.9) and (3.10), we have

$$\tilde{a}(X_x, Y) = \tilde{a}(X_{s_x(p)}, ds_x Y).$$

Therefore $(ds_x)_p X_p = X_{s_x(p)}$.

Theorem 3.9. A generalized symmetric exponential metric space must be Riemannian.

Proof. The proof is similar to the above cases.

REFERENCES

- 1. H. An, S. Deng, Invariant (α,β) -metric on homogeneous manifolds, Monatsh. Math., **154** (2008), 89-102.
- 2. D. Bao, S. S. Chern, Z. Shen, An introduction to Riemann-Finsler geometry, Springer-Verlag, NEW-YORK (2000).
- S. S. Chern , Z. Shen, Riemann-Finsler geometry, World Scientific, Nankai Tracts in Mathematics, vol. 6, (2005).
- 4. S. Deng and Z. Hou, On symmetric Finsler spaces, Israel J. Math. 162 (2007), 197-219.
- P. Habibi, A. Razavi, On generalized symmetric Finsler spaces, Geom. Dedicata, 149 (2010), 121-127.
- O. Kowalski, Generalized symmetric spaces, Lecture Notes in Mathematics, Springer Verlag, (1980).

- D. Latifi and A. Razavi, On homogeneous Finsler spaces, Rep. Math. Phys, 57 (2006) 357-366. Erratum: Rep. Math. Phys. 60 (2007), 347.
- 8. A. J. Ledger, M. Obata, Affine and Riemannian s-manifolds, J. Differential Geometry, 2 (1968), 451-459.
- A. J. Ledger, Espaces de Riemann symetriques generalises, C. R. Acad. Sc. Paris, 264 (1967), 947-948.
- 10. L. Zhang, S. Deng, On generalized symmetric Finsler spaces, Balkan J. Geom. Appl., $\bf 21$ (2016), 113-123.

Received: 23.01.2020 Accepted: 29.05.2020