
Journal of Finsler Geometry and its Applications

Vol. 1, No. 1 (2020), pp 26-36

DOI: 10.22098/jfga.2020.1006

On the geodesics of a homogeneous Finsler space with a
special (α, β)-metric

K. Kaura and G. Shankerb∗

aDepartment of Mathematics, Punjabi University College Ghudda, Bathinda,

Punjab, India.
b Department of Mathematics and Statistics, School of Basic and Applied

Sciences, Central University of Punjab, Bathinda, Punjab-151001, India.

E-mail: kirandeepiitd@gmail.com

E-mail: gshankar@cup.ac.in

Abstract. One of the most important concepts in geometry is of geodesics. Geodesic in a

manifold is the generalization of notion of a straight line in an Euclidean space. A geodesic

in a homogeneous Finsler space (G/H,F ) is called homogeneous geodesic if it is an orbit of

a one-parameter subgroup of G. Homogeneous geodesics on homogeneous Riemannian man-

ifolds have been studied by many authors. Latifi has extended the concept of homogeneous

geodesics in homogeneous Finsler spaces. He has given a criterion for characterization of

geodesic vectors. Latifi and Razavi have studied homogeneous geodesics in a 3-dimensional

connected Lie group with a left invariant Randers metric and show that all the geodesics on

spaces equipped with such metrics are homogeneous. In this paper, we give basic definitions

required to define a homogeneous Finsler space. Next, we study geodesics and geodesic vec-

tors for homogeneous Finsler space with infinite series (α, β)-metric. Next, we give a lemma

in which the existence of invariant vector field corresponding to 1-form β for a homogeneous

Finsler space with infinite series metric is proved. Further, we find necessary and sufficient

condition for a non-zero vector in this homogeneous space to be a geodesic vector.
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1. Introduction

According to S. S. Chern ([6]), Finsler geometry is just the Riemannian ge-

ometry without the quadratic restriction. Finsler generalized Riemann’s the-

ory in his doctoral thesis ([11]), but his name was established in differential

geometry by Cartan ([5]). In 1972, M. Matsumoto ([27]) had introduced the

concept of (α, β)-metric in Finsler geometry. A Finsler metric of the form

F = αϕ(s), s = β/α, where α =
√
aij(x)yiyj induced by a Riemannian metric

ã = aijdx
i ⊗ dxj on a connected smooth n-manifold M and β = bi(x)y

i a

1-form on M , is called an (α, β)-metric. (α, β)-metrics are the generalizations

of the Randers metric, introduced by G. Randers, in ([28]). There are various

applications of (α, β)-metrics in information geometry ([1]), physics and biol-

ogy ([2]). Some notable contributions on Finsler spaces with (α, β)-metrics can

be seen in ([17], [18], [30], [31], [32], [35], [36]).

One of the most important concepts in geometry is of geodesics. Geodesic

in a manifold is the generalization of notion of a straight line in an Euclidean

space. Geodesic can be viewed as a curve that minimizes the distance be-

tween two points on the manifold. A geodesic in a homogeneous Finsler space

(G/H,F ) is called homogeneous geodesic if it is an orbit of a one-parameter

subgroup of G. Homogeneous geodesics on homogeneous Riemannian mani-

folds have been studied by many authors ([12], [20], [22], [38]). The existence

of homogeneous geodesics in homogeneous Riemannian manifolds is quite an

interesting problem. In ([15]), Kajzer proves that there exists at least one ho-

mogeneous geodesic in a Riemannian manifold. Further, in ([33], [34]), Szenthe

proves that there exists infinitely many homogeneous geodesics through iden-

tity in a Riemannian manifold (G,α), where G is compact semi-simple Lie

group of rank ≥ 2. Later, in ([21]), Kowalski and Szenthe prove the existence

of at least one homogeneous geodesic through each point for any homogeneous

Riemannian manifold. Also, Kowalski and Vlasek ([23]) have shown that the

result proved in ([21]) is not true in general. They have given some examples of

homogeneous Riemannian manifolds of dimension ≥ 4 admitting only one ho-

mogeneous geodesic. There are many applications of homogeneous geodesics in

mechanics. Arnold ([3]) has studied the geodesics of left invariant Riemannian

metrics on Lie groups, extending Euler’s theory of rigid body motion and called

homogeneous geodesic as “relative equilibria”. The equation of motion of many

systems in classical mechanics reduces to the geodesic equation in an appro-

priate Riemannian manifold. For example, Tóth ([37]) has studied trajectories

which are orbits of a one-parameter symmetry group in case of Lagrangian and

Hamiltonian systems. Also, Lacomba ([24]) uses homogeneous geodesics in the

work of Smale’s mechanical systems.

Latifi ([25]) has extended the concept of homogeneous geodesics in homoge-

neous Finsler spaces. In ([25]), he has given a criterion for the characterization
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of geodesic vectors. Latifi and Razavi ([26]) study homogeneous geodesics in

a 3-dimensional connected Lie group with a left invariant Randers metric and

show that all the geodesics on spaces equipped with such metrics are homo-

geneous. Habibi et al. ([13]) have extended Szenthe’s result of homogeneous

geodesics for invariant Finsler metrics. Yan and Deng ([40]) generalize this

result and prove that there exists at least one homogeneous geodesic through

each point for any compact homogeneous Finsler space and also extend Kowal-

ski and Szenthe’s result to the Randers space. Yan ([41]) proves the existence

of at least one homogeneous geodesic through each point for a homogeneous

Finsler space of odd dimension. Hosseini and Moghaddam ([14]) study the

existence of homogeneous geodesic in homogeneous (α, β)-spaces. Dušek ([10])

indicates a gap in the proof of main result of ([41]) and reproves this result

and also studies homogeneous geodesics on a homogeneous Berwald space or

homogeneous reversible Finsler space. Recently in 2018, Yan and Huang ([42])

prove that any homogeneous Finsler space admits at least one homogeneous

geodesic through each point.

2. Preliminaries

In this section, we give some basic concepts of Finsler geometry that are

required for next sections. For symbols and notations , we refer ([4], [7]) and

([8]).

Definition 2.1. Let M be a smooth manifold of dimension n, TpM the tangent

space at any point p ∈ M. A real valued bilinear function Q : TpM × TpM −→
[0,∞) is called a Riemannian metric if it is symmetric and positive-definite,i.e.,

∀ X,Y ∈ X(M),

(i) Q(X,Y ) = Q(Y,X).

(ii) Q(X,X) ≥ 0 and Q(X,X) = 0 if and only if X = 0.

A smooth manifold with a given Riemannian metric is called a Riemannian

manifold.

Definition 2.2. Let V be an n-dimensional real vector space. It is called a

Minkowski space if there exists a real valued function F : V −→ R satisfying

the following conditions:

(a) F is smooth on V \{0},
(b) F (v) ≥ 0 ∀ v ∈ V,

(c) F is positively homogeneous, i.e., F (λv) = λF (v), ∀ λ > 0,

(d) For a basis {v1, v2, ..., vn} of V and y = yivi ∈ V , the Hessian matrix(
gij

)
=

(
1

2
F 2
yiyj

)
is positive-definite at every point of V \{0}.

In this case, F is called a Minkowski norm.
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Definition 2.3. Let M be a connected smooth manifold. If there exists a

function F : TM −→ [0,∞) such that F is smooth on the slit tangent bundle

TM\{0} and the restriction of F to any Tp(M), p ∈ M , is a Minkowski norm,

then (M,F ) is called a Finsler space and F is called a Finsler metric.

Let (M,F ) be a Finsler space and let (xi, yi) be a standard coordinate sys-

tem in Tx(M). The induced inner product gy on Tx(M) is given by gy(u, v) =

gij(x, y)u
ivj , where u = ui ∂

∂xi
, v = vi

∂

∂xi
∈ Tx(M). Also note that F (x, y) =√

gy(y, y).

Consider the rth series (α, β)-metric:

F (α, β) = β
r=∞∑
r=0

(
α

β

)r

.

If r = 1, then it is a Randers metric.

If r = ∞, then

F =
β2

β − α
.

This metric is called an infinite series (α, β)-metric. Interesting fact about this

metric is that, it is the difference of a Randers metric and a Matsumoto metric,

and satisfies Shen’s lemma ([7]) given below:

Lemma 2.4. Let F = αϕ(s), s = β/α, where α is a Riemannian metric and β

is a 1-form whose length with respect to α is bounded above, i.e., b := ∥β∥α < b0,

where b0 is a positive real number. Then F is a Finsler metric if and only if

the function ϕ = ϕ(s) is a smooth positive function on (−b0, b0) and satisfies

the following condition:

ϕ(s)− sϕ′(s) +
(
b2 − s2

)
ϕ′′(s) > 0, |s| ≤ b < b0.

Definition 2.5. A diffeomorphism ϕ : M −→ M on a Finsler space (M,F )

is called an isometry if F (p,X) = F (ϕ(p), dϕp(X)), for any p ∈ M and

X ∈ Tp(M).

Definition 2.6. A Lie group G is called a Lie transformation group of a smooth

manifold M if it has a smooth action on M .

Definition 2.7. Let (M,F ) be a connected Finsler space. If the action of the

group of isometries of (M,F ), denoted by I(M,F ), is transitive on M , then it

is called a homogeneous Finsler space.

Let (M,Q) be a Riemannian manifold. A geodesic σ : R −→ M is called ho-

mogeneous geodesic if there exists a one-parameter group of isometries ϕ : R×
M −→ M such that σ(t) = ϕ(t, σ(0)), t ∈ R. If all the geodesics of a Rie-

mannian manifold are homogeneous, then it is called a g.o. space (geodesic
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orbit space). Every naturally reductive Riemannian manifold is a g.o. space.

The first example of a g.o. space which is not naturally reductive was given by

Kaplan ([16]).

In 2014, Yan and Deng ([39]) have studied Finsler g.o. spaces defined as

follows:

A Finsler space (M,F ) is called a Finsler g.o. space if every geodesic of

(M,F ) is the orbit of a one-parameter subgroup of G = I(M,F ), i.e., if

σ : R −→ M is a geodesic, then ∃ a non-zero vector Z ∈ g = Lie(G) and

p ∈ M such that σ(t) = exp(tZ).p. A Finsler g.o. space has vanishing S-

curvature. Also, note that every Finsler g.o. space is homogeneous.

A homogeneous Finsler space is a g.o. space if and only if the projections of

all the geodesic vectors cover the set TeH(G/H)− {0}.

Definition 2.8. Let (G/H,F ) be a homogeneous Finsler space and e be the

identity of G. A geodesic σ(t) through the origin eH of G/H is called homo-

geneous if it is an orbit of a one-parameter subgroup of G, i.e., there exists a

non-zero vector X ∈ g = Lie(G) such that σ(t) = exp(tX).eH, t ∈ R.

3. Geodesic vector

The problem of studying homogeneous geodesics of a homogeneous space is

basically the study of its geodesic vectors.

Let (M,F ) be a homogeneous Finsler space. Then, M can be written as a

coset space G/H, where G = I(M,F ) is a Lie transformation group of M and

H, the compact isotropy subgroup of I(M,F ) at some point x ∈ M([9]) . Let

g and h be the Lie algebras of the Lie groups G and H respectively. Also, let

m be a subspace of g such that Ad(h)m ⊂ m ∀ h ∈ H, and g = h + m be a

reductive decomposition of g.

Observe that for any Y ∈ g, the vector field Y ∗ =
d

dt
(exp(tY )H)

∣∣∣∣
t=0

is

called the fundamental Killing vector field on G/H generated by Y ([19]).

The canonical projection π : G −→ G/H induces an isomorphism between the

subspace m and the tangent space TeH (G/H) through the following map:

m −→ TeH (G/H)

v −→ d

dt
(exp(tv)H)|t=0.

We have dπ(Ym) = Y ∗
eH . Using the natural identification and scalar product

g
Y ∗
eH

on TeH (G/H), we get a scalar product g
Ym

on m.
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Definition 3.1. Let (G/H,F ) be a homogeneous Finsler space and e be the

identity of G. A non-zero vector X ∈ g is called a geodesic vector if the curve

exp(tX).eH is a geodesic of (G/H,F ).

The folowing result proved in ([25]) gives a criterion for a non-zero vector

to be a geodesic vector in a homogeneous Finsler space.

Lemma 3.2. A non-zero vector Y ∈ g is a geodesic vector if and only if

g
Ym

(Ym, [Y, Z]m) = 0 ∀ Z ∈ g.

Now, we give the following lemma which was proved in ([31]). In this lemma,

we have proved the existence of invariant vector field corresponding to 1-form

β for a homogeneous Finsler space with infinite series metric.

Lemma 3.3. Let (M,α) be a Riemannian space. Then the infinite series

Finsler metric F =
β2

β − α
, β = biy

i, a 1-form with ∥β∥ =
√
bibi < 1 consists

of a Riemannian metric α along with a smooth vector field X on M with

α (X|x) < 1 ∀ x ∈ M , i.e.,

F (x, y) =
⟨X|x, y⟩2

⟨X|x, y⟩ − α (x, y)
, x ∈ M, y ∈ TxM,

where ⟨ , ⟩ is the inner product on TxM induced by the Riemannian metric α.

Next, we deduce necessary and sufficient condition for a nonzero vector in

a homogeneous Finsler space with infinite series (α, β)-metric to be a geodesic

vector.

Theorem 3.4. Let G/H be a homogeneous Finsler space with infinite series

metric F =
β2

β − α
given by an invariant Riemannian metric ã and an invariant

vector field X̃ such that X̃(H) = X. Then, a non-zero vector Y ∈ g is a geodesic

vector if and only if

⟨X,Ym⟩3(
⟨X,Ym⟩ −

√
⟨Ym, Ym⟩

)4×

[
⟨X, [Y, Z]m⟩

{
⟨X,Ym⟩2 − 4 ⟨Ym, Ym⟩3/2 + ⟨X,Ym⟩

√
⟨Ym, Ym⟩+ 2 ⟨Ym, Ym⟩

}
+ ⟨Ym, [Y, Z]m⟩

{ ⟨X,Ym⟩2√
⟨Ym, Ym⟩

− ⟨X,Ym⟩
}]

= 0.

(3.1)

Proof. Using lemma 3.3, we can write

F (Y ) =
⟨X,Y ⟩2

⟨X,Y ⟩ −
√
⟨Y, Y ⟩

.
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Also, we know that

gY (U, V ) =
1

2

∂2

∂s∂t
F 2(Y + sU + tV )

∣∣∣∣
s=t=0

.

After some calculations, we get

gY (U, V ) =
⟨X,Y ⟩2(

⟨X,Y ⟩ −
√
⟨Y, Y ⟩

)4

[
⟨X,Y ⟩2 ⟨X,V ⟩ ⟨X,U⟩ − 4 ⟨Y, Y ⟩3/2 ⟨X,V ⟩ ⟨X,U⟩

+ 6 ⟨Y, Y ⟩ ⟨X,V ⟩ ⟨X,U⟩+ ⟨X,Y ⟩2 ⟨X,V ⟩ ⟨U, Y ⟩√
⟨Y, Y ⟩

− 4 ⟨X,Y ⟩ ⟨X,V ⟩ ⟨U, Y ⟩

− ⟨X,Y ⟩3 ⟨U, Y ⟩ ⟨V, Y ⟩
⟨Y, Y ⟩3/2

+
⟨X,Y ⟩3 ⟨U, V ⟩√

⟨Y, Y ⟩
+

4 ⟨X,Y ⟩2 ⟨U, Y ⟩ ⟨V, Y ⟩
⟨Y, Y ⟩

− ⟨X,Y ⟩2 ⟨U, V ⟩+ ⟨X,Y ⟩2 ⟨X,U⟩ ⟨V, Y ⟩√
⟨Y, Y ⟩

− 4 ⟨X,Y ⟩ ⟨X,U⟩ ⟨V, Y ⟩
]
.

(3.2)

From above equation, we can write

g
Ym

(Ym, [Y, Z]m) =
⟨X,Ym⟩2(

⟨X,Ym⟩ −
√

⟨Ym, Ym⟩
)4

[
⟨X,Ym⟩2 ⟨X, [Y, Z]m⟩ ⟨X,Ym⟩

− 4 ⟨Ym, Ym⟩3/2 ⟨X, [Y,Z]m⟩ ⟨X,Ym⟩+ 6 ⟨Ym, Ym⟩ ⟨X, [Y,Z]m⟩ ⟨X,Ym⟩

+
⟨X,Ym⟩2 ⟨X, [Y,Z]m⟩ ⟨Ym, Ym⟩√

⟨Ym, Ym⟩
− 4 ⟨X,Ym⟩ ⟨X, [Y, Z]m⟩ ⟨Ym, Ym⟩

−
⟨X,Ym⟩3 ⟨Ym, Ym⟩ ⟨[Y,Z]m , Ym⟩

⟨Ym, Ym⟩3/2
+

⟨X,Ym⟩3 ⟨Ym, [Y,Z]m⟩√
⟨Ym, Ym⟩

+
4 ⟨X,Ym⟩2 ⟨Ym, Ym⟩ ⟨[Y, Z]m , Ym⟩

⟨Ym, Ym⟩
− ⟨X,Ym⟩2 ⟨Ym, [Y, Z]m⟩

+
⟨X,Ym⟩2 ⟨X,Ym⟩ ⟨[Y,Z]m , Ym⟩√

⟨Ym, Ym⟩
− 4 ⟨X,Ym⟩ ⟨X,Ym⟩ ⟨[Y,Z]m , Ym⟩

]
.

=
⟨X,Ym⟩3(

⟨X,Ym⟩ −
√

⟨Ym, Ym⟩
)4×

[
⟨X, [Y, Z]m⟩

{
⟨X,Ym⟩2 − 4 ⟨Ym, Ym⟩3/2 + ⟨X,Ym⟩

√
⟨Ym, Ym⟩+ 2 ⟨Ym, Ym⟩

}
+ ⟨Ym, [Y, Z]m⟩

{ ⟨X,Ym⟩2√
⟨Ym, Ym⟩

− ⟨X,Ym⟩
}]

.

(3.3)

Now, from lemma (3.2), Y ∈ g is a geodesic vector if and only if

gYm
(Ym, [Y, Z]m) = 0, ∀ Z ∈ m.
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Therefore g
Ym

(Ym, [Y, Z]m) = 0 if and only if equation (3.1) holds. □

Corollary 3.5. Let (G/H,F ) be a homogeneous Finsler space with infinite

series metric F =
β2

β − α
defined by an invariant Riemannian metric ⟨ , ⟩ and

an invariant vector field X̃ such that X̃(H) = X. Let Y ∈ g be a vector such

that ⟨X, [Y, Z]m⟩ = 0 ∀ Z ∈ m. Then Y is a geodesic vector of (G/H, ⟨ , ⟩) if

and only if Y is a geodesic vector of (G/H,F ).

Proof. From equation (3.3), we can write

g
Ym

(Ym, [Y, Z]m) =

⟨
X,Ym

⟩3

(⟨
X,Ym

⟩
−
√⟨

Ym, Ym

⟩)4
×

[⟨
X, [Y,Z]m

⟩{⟨
X,Ym

⟩2

− 4
⟨
Ym, Ym

⟩3/2

+ ⟨X,Ym⟩
√⟨

Ym, Ym

⟩
+ 2

⟨
Ym, Ym

⟩}

+
⟨
Ym,

[
Y,Z

]
m

⟩{ ⟨
X,Ym

⟩2

√⟨
Ym, Ym

⟩ −
⟨
X,Ym

⟩}]

=

⟨
X,Ym

⟩4⟨
Ym, [Y, Z]m

⟩
(⟨

X,Ym

⟩
−
√⟨

Ym, Ym

⟩)3
√⟨

Ym, Ym

⟩ , because ⟨X, [Y,Z]m⟩ = 0.

Therefore gYm
(Ym, [Y, Z]m) = 0 if and only if ⟨Ym, [Y, Z]m⟩ = 0. □

Theorem 3.6. Let (G/H,F ) be a homogeneous Finsler space with infinite

series metric F =
β2

β − α
defined by an invariant Riemannian metric ⟨ , ⟩ and

an invariant vector field X̃ such that X̃(H) = X. Then X is a geodesic vector

of (G/H, ⟨ , ⟩) if and only if X is a geodesic vector of (G/H,F ).

Proof. From equation (3.2), we can write

g
X
(X, [X,Z]m) =

⟨X,X⟩2(
⟨X,X⟩ −

√
⟨X,X⟩

)4

[
⟨X,X⟩2 ⟨X, [X,Z]m⟩ ⟨X,X⟩

− 4 ⟨X,X⟩3/2 ⟨X, [X,Z]m⟩ ⟨X,X⟩+ 6 ⟨X,X⟩ ⟨X, [X,Z]m⟩ ⟨X,X⟩

+
⟨X,X⟩2 ⟨X, [X,Z]m⟩ ⟨X,X⟩√

⟨X,X⟩
− 4 ⟨X,X⟩ ⟨X, [X,Z]m⟩ ⟨X,X⟩

−
⟨X,X⟩3 ⟨X,X⟩ ⟨[X,Z]m , X⟩

⟨X,X⟩3/2
+

⟨X,X⟩3 ⟨X, [X,Z]m⟩√
⟨X,X⟩
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+
4 ⟨X,X⟩2 ⟨X,X⟩ ⟨[X,Z]m , X⟩

⟨X,X⟩
− ⟨X,X⟩2 ⟨X, [X,Z]m⟩

+
⟨X,X⟩2 ⟨X,X⟩ ⟨[X,Z]m , X⟩√

⟨X,X⟩
− 4 ⟨X,X⟩ ⟨X,X⟩ ⟨[X,Z]m , X⟩

]
.

=
⟨X,X⟩3

(
⟨X,X⟩2 + ⟨X,X⟩ − 2 ⟨X,X⟩

√
⟨X,X⟩

)
⟨X, [X,Z]m⟩(

⟨X,X⟩ −
√
⟨X,X⟩

)4

=
⟨X,X⟩3 ⟨X, [X,Z]m⟩(
⟨X,X⟩ −

√
⟨X,X⟩

)2 .

Therefore g
X
(X, [X,Z]m) = 0 if and only if ⟨X, [X,Z]m⟩ = 0. □

Corollary 3.7. Let (G/H,F ) be a homogeneous Finsler space with an in-

variant infinite series metric F =
β2

β − α
defined by an invariant Riemannian

metric ⟨ , ⟩ and an invariant vector field X̃ such that X = X̃(H) be a geodesic

vector of Riemannian metric ⟨ , ⟩. Then there exists atleast one homogeneous

geodesic of (G/H,F ) through origin eH=H.

Proof. Since X is a geodesic vector of (G/H, ⟨ , ⟩). Therefore, by above the-

orem X is a geodesic vector of (G/H,F ). Thus, (G/H,F ) admits atleast one

homogeneous geodesic through origin. □

Theorem 3.8. Let (M,F ) be a homogeneous Finsler space with an invariant

infinite series (α, β)-metric F =
β2

β − α
. Then there exists atleast one homoge-

neous geodesic of (M,F ) through each point.

Proof. Since (M,F ) is a homogeneous Finsler space, M can be written as G/H,

where G = I(M,F ) is a connected Lie group of isometries acting transitively

on M , and H is the compact isotropy subgroup of G at some point x ∈ M . Let

the Lie algebras of G and H be g and h respectively. We denote the Killing

form of g by K and null space(redical) of K by radK. In ([21]), it is shown

that K is nondegenerate on h because H is compact. Let m be the orthogonal

complement of h with respect to K, i.e.,

m = h⊥ = {W ∈ g : K(W,Z) = 0, ∀Z ∈ h}.

Then g = h + m is a reductive decomposition and radK ⊂ m. Now, using the

theorem 1.1 of ([42]), homogeneous Finsler space with infinite series metric

admits atleast one homogeneous geodesic through each point. □
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